Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Elife ; 122023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37435805

RESUMO

Calcineurin B homologous protein 3 (CHP3) is an EF-hand Ca2+-binding protein involved in regulation of cancerogenesis, cardiac hypertrophy, and neuronal development through interactions with sodium/proton exchangers (NHEs) and signalling proteins. While the importance of Ca2+ binding and myristoylation for CHP3 function has been recognized, the underlying molecular mechanism remained elusive. In this study, we demonstrate that Ca2+ binding and myristoylation independently affect the conformation and functions of human CHP3. Ca2+ binding increased local flexibility and hydrophobicity of CHP3 indicative of an open conformation. The Ca2+-bound CHP3 exhibited a higher affinity for NHE1 and associated stronger with lipid membranes compared to the Mg2+-bound CHP3, which adopted a closed conformation. Myristoylation enhanced the local flexibility of CHP3 and decreased its affinity to NHE1 independently of the bound ion, but did not affect its binding to lipid membranes. The data exclude the proposed Ca2+-myristoyl switch for CHP3. Instead, a Ca2+-independent exposure of the myristoyl moiety is induced by binding of the target peptide to CHP3 enhancing its association to lipid membranes. We name this novel regulatory mechanism 'target-myristoyl switch'. Collectively, the interplay of Ca2+ binding, myristoylation, and target binding allows for a context-specific regulation of CHP3 functions.


Assuntos
Calcineurina , Proteínas de Ligação ao Cálcio , Humanos , Calcineurina/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Conformação Molecular , Prótons , Lipídeos , Cálcio/metabolismo , Ligação Proteica , Conformação Proteica
2.
J Cell Biol ; 219(9)2020 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-32706374

RESUMO

Neurexins are presynaptic adhesion molecules that organize synapses by binding to diverse trans-synaptic ligands, but how neurexins are regulated is incompletely understood. Here we identify FAM19A/TAFA proteins, "orphan" cytokines, as neurexin regulators that interact with all neurexins, except for neurexin-1γ, via an unusual mechanism. Specifically, we show that FAM19A1-A4 bind to the cysteine-loop domain of neurexins by forming intermolecular disulfide bonds during transport through the secretory pathway. FAM19A-binding required both the cysteines of the cysteine-loop domain and an adjacent sequence of neurexins. Genetic deletion of neurexins suppressed FAM19A1 expression, demonstrating that FAM19As physiologically interact with neurexins. In hippocampal cultures, expression of exogenous FAM19A1 decreased neurexin O-glycosylation and suppressed its heparan sulfate modification, suggesting that FAM19As regulate the post-translational modification of neurexins. Given the selective expression of FAM19As in specific subtypes of neurons and their activity-dependent regulation, these results suggest that FAM19As serve as cell type-specific regulators of neurexin modifications.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Quimiocinas/metabolismo , Moléculas de Adesão de Célula Nervosa/metabolismo , Neurônios/metabolismo , Sequência de Aminoácidos , Animais , Células Cultivadas , Hipocampo/metabolismo , Ligantes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/metabolismo , Sinapses/metabolismo
3.
Science ; 363(6429): 875-880, 2019 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-30792303

RESUMO

Potassium (K+) channels have been evolutionarily tuned for activation by diverse biological stimuli, and pharmacological activation is thought to target these specific gating mechanisms. Here we report a class of negatively charged activators (NCAs) that bypass the specific mechanisms but act as master keys to open K+ channels gated at their selectivity filter (SF), including many two-pore domain K+ (K2P) channels, voltage-gated hERG (human ether-à-go-go-related gene) channels and calcium (Ca2+)-activated big-conductance potassium (BK)-type channels. Functional analysis, x-ray crystallography, and molecular dynamics simulations revealed that the NCAs bind to similar sites below the SF, increase pore and SF K+ occupancy, and open the filter gate. These results uncover an unrecognized polypharmacology among K+ channel activators and highlight a filter gating machinery that is conserved across different families of K+ channels with implications for rational drug design.


Assuntos
Clorobenzenos/farmacologia , Canal de Potássio ERG1/agonistas , Canal de Potássio ERG1/química , Ativação do Canal Iônico/efeitos dos fármacos , Canais de Potássio Ativados por Cálcio de Condutância Alta/agonistas , Canais de Potássio Ativados por Cálcio de Condutância Alta/química , Tetra-Hidronaftalenos/farmacologia , Tetrazóis/farmacologia , Tioureia/análogos & derivados , ortoaminobenzoatos/farmacologia , Animais , Células CHO , Clorobenzenos/química , Cricetulus , Cristalografia por Raios X , Desenho de Fármacos , Células HEK293 , Humanos , Simulação de Dinâmica Molecular , Domínios Proteicos , Tetra-Hidronaftalenos/química , Tetrazóis/química , Tioureia/química , Tioureia/farmacologia , Xenopus , ortoaminobenzoatos/química
4.
Neuron ; 96(4): 827-838.e9, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29056295

RESUMO

Plasma membrane Ca2+-ATPases (PMCAs), a family of P-type ATPases, extrude Ca2+ ions from the cytosol to the extracellular space and are considered to be key regulators of Ca2+ signaling. Here we show by functional proteomics that native PMCAs are heteromeric complexes that are assembled from two pore-forming PMCA1-4 subunits and two of the single-span membrane proteins, either neuroplastin or basigin. Contribution of the two Ig domain-containing proteins varies among different types of cells and along postnatal development. Complex formation of neuroplastin or basigin with PMCAs1-4 occurs in the endoplasmic reticulum and is obligatory for stability of the PMCA proteins and for delivery of PMCA complexes to the surface membrane. Knockout and (over)-expression of both neuroplastin and basigin profoundly affect the time course of PMCA-mediated Ca2+ transport, as well as submembraneous Ca2+ concentrations under steady-state conditions. Together, these results establish neuroplastin and basigin as obligatory auxiliary subunits of native PMCAs and key regulators of intracellular Ca2+ concentration.


Assuntos
Basigina/metabolismo , Cálcio/metabolismo , Glicoproteínas de Membrana/metabolismo , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo , Animais , Retículo Endoplasmático/metabolismo , Feminino , Masculino , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Knockout , Subunidades Proteicas/metabolismo
5.
Proc Natl Acad Sci U S A ; 114(7): E1253-E1262, 2017 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-28154140

RESUMO

Establishment, specification, and validation of synaptic connections are thought to be mediated by interactions between pre- and postsynaptic cell-adhesion molecules. Arguably, the best-characterized transsynaptic interactions are formed by presynaptic neurexins, which bind to diverse postsynaptic ligands. In a proteomic screen of neurexin-1 (Nrxn1) complexes immunoisolated from mouse brain, we identified carbonic anhydrase-related proteins CA10 and CA11, two homologous, secreted glycoproteins of unknown function that are predominantly expressed in brain. We found that CA10 directly binds in a cis configuration to a conserved membrane-proximal, extracellular sequence of α- and ß-neurexins. The CA10-neurexin complex is stable and stoichiometric, and results in formation of intermolecular disulfide bonds between conserved cysteine residues in neurexins and CA10. CA10 promotes surface expression of α- and ß-neurexins, suggesting that CA10 may form a complex with neurexins in the secretory pathway that facilitates surface transport of neurexins. Moreover, we observed that the Nrxn1 gene expresses from an internal 3' promoter a third isoform, Nrxn1γ, that lacks all Nrxn1 extracellular domains except for the membrane-proximal sequences and that also tightly binds to CA10. Our data expand the understanding of neurexin-based transsynaptic interaction networks by providing further insight into the interactions nucleated by neurexins at the synapse.


Assuntos
Encéfalo/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Moléculas de Adesão de Célula Nervosa/metabolismo , Neurônios/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Ligação ao Cálcio , Sequência Conservada , Células HEK293 , Humanos , Ligantes , Camundongos
6.
J Neurosci ; 34(41): 13586-99, 2014 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-25297088

RESUMO

Parkinson disease (PD) is an α-synucleinopathy resulting in the preferential loss of highly vulnerable dopamine (DA) substantia nigra (SN) neurons. Mutations (e.g., A53T) in the α-synuclein gene (SNCA) are sufficient to cause PD, but the mechanism of their selective action on vulnerable DA SN neurons is unknown. In a mouse model overexpressing mutant α-synuclein (A53T-SNCA), we identified a SN-selective increase of in vivo firing frequencies in DA midbrain neurons, which was not observed in DA neurons in the ventral tegmental area. The selective and age-dependent gain-of-function phenotype of A53T-SCNA overexpressing DA SN neurons was in part mediated by an increase of their intrinsic pacemaker frequency caused by a redox-dependent impairment of A-type Kv4.3 potassium channels. This selective enhancement of "stressful pacemaking" of DA SN neurons in vivo defines a functional response to mutant α-synuclein that might be useful as a novel biomarker for the "DA system at risk" before the onset of neurodegeneration in PD.


Assuntos
Neurônios Dopaminérgicos/fisiologia , Mutação/fisiologia , Estresse Oxidativo/fisiologia , Canais de Potássio Shal/fisiologia , Substância Negra/fisiologia , alfa-Sinucleína/genética , Envelhecimento/fisiologia , Animais , Fenômenos Eletrofisiológicos , Glutationa/metabolismo , Glutationa/fisiologia , Ativação do Canal Iônico/fisiologia , Masculino , Camundongos , Mutação/genética , Substância Negra/citologia , Substância Negra/crescimento & desenvolvimento , Área Tegmentar Ventral/crescimento & desenvolvimento , Área Tegmentar Ventral/fisiologia
7.
Am J Hum Genet ; 88(4): 422-32, 2011 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-21419380

RESUMO

Megalencephalic leukoencephalopathy with subcortical cysts (MLC) is a leukodystrophy characterized by early-onset macrocephaly and delayed-onset neurological deterioration. Recessive MLC1 mutations are observed in 75% of patients with MLC. Genetic-linkage studies failed to identify another gene. We recently showed that some patients without MLC1 mutations display the classical phenotype; others improve or become normal but retain macrocephaly. To find another MLC-related gene, we used quantitative proteomic analysis of affinity-purified MLC1 as an alternative approach and found that GlialCAM, an IgG-like cell adhesion molecule that is also called HepaCAM and is encoded by HEPACAM, is a direct MLC1-binding partner. Analysis of 40 MLC patients without MLC1 mutations revealed multiple different HEPACAM mutations. Ten patients with the classical, deteriorating phenotype had two mutations, and 18 patients with the improving phenotype had one mutation. Most parents with a single mutation had macrocephaly, indicating dominant inheritance. In some families with dominant HEPACAM mutations, the clinical picture and magnetic resonance imaging normalized, indicating that HEPACAM mutations can cause benign familial macrocephaly. In other families with dominant HEPACAM mutations, patients had macrocephaly and mental retardation with or without autism. Further experiments demonstrated that GlialCAM and MLC1 both localize in axons and colocalize in junctions between astrocytes. GlialCAM is additionally located in myelin. Mutant GlialCAM disrupts the localization of MLC1-GlialCAM complexes in astrocytic junctions in a manner reflecting the mode of inheritance. In conclusion, GlialCAM is required for proper localization of MLC1. HEPACAM is the second gene found to be mutated in MLC. Dominant HEPACAM mutations can cause either macrocephaly and mental retardation with or without autism or benign familial macrocephaly.


Assuntos
Transtorno Autístico/genética , Moléculas de Adesão Celular Neuronais/genética , Deficiência Intelectual/genética , Megalencefalia/genética , Mutação , Proteínas/genética , Sequência de Aminoácidos , Animais , Transtorno Autístico/metabolismo , Encéfalo/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Proteínas de Ciclo Celular , Células Cultivadas , Cistos/genética , Cistos/metabolismo , Genes Dominantes , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/genética , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/metabolismo , Humanos , Deficiência Intelectual/metabolismo , Megalencefalia/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Dados de Sequência Molecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas/genética , Proteínas/metabolismo , Ratos , Homologia de Sequência de Aminoácidos
8.
Neuron ; 62(6): 814-25, 2009 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-19555650

RESUMO

Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are key modulators of neuronal activity by providing the depolarizing cation current I(h) involved in rhythmogenesis, dendritic integration, and synaptic transmission. These tasks critically depend on the availability of HCN channels, which is dynamically regulated by intracellular cAMP; the range of this regulation, however, largely differs among neurons in the mammalian brain. Using affinity purification and high-resolution mass spectrometry, we identify the PEX5R/Trip8b protein as the beta subunit of HCN channels in the mammalian brain. Coassembly of PEX5R/Trip8b affects HCN channel gating in a subtype-dependent and mode-specific way: activation of HCN2 and HCN4 by cAMP is largely impaired, while gating by phosphoinositides and basal voltage-dependence remain unaffected. De novo expression of PEX5R/Trip8b in cardiomyocytes abolishes beta-adrenergic stimulation of HCN channels. These results demonstrate that PEX5R/Trip8b is an intrinsic auxiliary subunit of brain HCN channels and establish HCN-PEX5R/Trip8b coassembly as a mechanism to control the channels' responsiveness to cyclic nucleotide signaling.


Assuntos
AMP Cíclico/farmacologia , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Ativação do Canal Iônico/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Canais de Potássio/metabolismo , Receptores Adrenérgicos beta 1/metabolismo , Antagonistas de Receptores Adrenérgicos beta 1 , Animais , Encéfalo/ultraestrutura , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Embrião de Mamíferos , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica/genética , Proteínas de Fluorescência Verde/genética , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Ativação do Canal Iônico/genética , Isoproterenol/farmacologia , Espectrometria de Massas/métodos , Potenciais da Membrana/genética , Proteínas de Membrana/genética , Microinjeções/métodos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Oócitos , Técnicas de Patch-Clamp/métodos , Peroxinas , Canais de Potássio/genética , Multimerização Proteica/fisiologia , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Ratos , Sinaptossomos/efeitos dos fármacos , Sinaptossomos/metabolismo , Transdução Genética/métodos , Xenopus
9.
Neuron ; 52(6): 1027-36, 2006 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-17178405

RESUMO

Hyperpolarization-activated, cyclic-nucleotide-gated (HCN) channels mediate the depolarizing cation current (termed I(h) or I(f)) that initiates spontaneous rhythmic activity in heart and brain. This function critically depends on the reliable opening of HCN channels in the subthreshold voltage-range. Here we show that activation of HCN channels at physiologically relevant voltages requires interaction with phosphoinositides such as phosphatidylinositol-4,5-bisphosphate (PIP(2)). PIP(2) acts as a ligand that allosterically opens HCN channels by shifting voltage-dependent channel activation approximately 20 mV toward depolarized potentials. Allosteric gating by PIP(2) occurs in all HCN subtypes and is independent of the action of cyclic nucleotides. In CNS neurons and cardiomyocytes, enzymatic degradation of phospholipids results in reduced channel activation and slowing of the spontaneous firing rate. These results demonstrate that gating by phospholipids is essential for the pacemaking activity of HCN channels in cardiac and neuronal rhythmogenesis.


Assuntos
Relógios Biológicos/fisiologia , Ativação do Canal Iônico/fisiologia , Canais Iônicos/fisiologia , Neurônios/fisiologia , Fosfatidilinositóis/fisiologia , 8-Bromo Monofosfato de Adenosina Cíclica/farmacologia , Androstadienos/farmacologia , Animais , Relógios Biológicos/efeitos dos fármacos , Encéfalo/citologia , Canais de Cátion Regulados por Nucleotídeos Cíclicos , Relação Dose-Resposta a Droga , Interações Medicamentosas , Estimulação Elétrica/métodos , Embrião de Mamíferos , Embrião não Mamífero , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Técnicas In Vitro , Ativação do Canal Iônico/efeitos dos fármacos , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Potenciais da Membrana/efeitos da radiação , Camundongos , Camundongos Endogâmicos C57BL , Mutação/fisiologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/fisiologia , Miócitos Cardíacos/efeitos da radiação , Neurônios/efeitos dos fármacos , Oócitos , Técnicas de Patch-Clamp/métodos , Fosfatidilinositol 4,5-Difosfato/farmacologia , Inibidores de Fosfodiesterase/farmacologia , Canais de Potássio , Pirimidinas/farmacologia , Wortmanina , Xenopus
10.
Neuron ; 49(5): 697-706, 2006 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-16504945

RESUMO

The voltage-gated potassium (Kv) channel subunit Kv1.1 is a major constituent of presynaptic A-type channels that modulate synaptic transmission in CNS neurons. Here, we show that Kv1.1-containing channels are complexed with Lgi1, the functionally unassigned product of the leucine-rich glioma inactivated gene 1 (LGI1), which is causative for an autosomal dominant form of lateral temporal lobe epilepsy (ADLTE). In the hippocampal formation, both Kv1.1 and Lgi1 are coassembled with Kv1.4 and Kvbeta1 in axonal terminals. In A-type channels composed of these subunits, Lgi1 selectively prevents N-type inactivation mediated by the Kvbeta1 subunit. In contrast, defective Lgi1 molecules identified in ADLTE patients fail to exert this effect resulting in channels with rapid inactivation kinetics. The results establish Lgi1 as a novel subunit of Kv1.1-associated protein complexes and suggest that changes in inactivation gating of presynaptic A-type channels may promote epileptic activity.


Assuntos
Encéfalo/metabolismo , Canal de Potássio Kv1.1/fisiologia , Canal de Potássio Kv1.2/fisiologia , Inibição Neural/fisiologia , Proteínas/metabolismo , Sequência de Aminoácidos , Animais , Western Blotting/métodos , Encéfalo/citologia , Química Encefálica , Membrana Celular/metabolismo , Relação Dose-Resposta à Radiação , Estimulação Elétrica/métodos , Humanos , Imuno-Histoquímica/métodos , Peptídeos e Proteínas de Sinalização Intracelular , Espectrometria de Massas/métodos , Potenciais da Membrana/fisiologia , Mutagênese/fisiologia , Mutação , Oócitos , Técnicas de Patch-Clamp/métodos , Conformação Proteica , Ratos , Alinhamento de Sequência , Coloração pela Prata/métodos , Transfecção/métodos , Xenopus
11.
Neuron ; 43(6): 847-58, 2004 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-15363395

RESUMO

Small conductance Ca(2+)-activated K+ channels (SK channels) couple the membrane potential to fluctuations in intracellular Ca2+ concentration in many types of cells. SK channels are gated by Ca2+ ions via calmodulin that is constitutively bound to the intracellular C terminus of the channels and serves as the Ca2+ sensor. Here we show that, in addition, the cytoplasmic N and C termini of the channel protein form a polyprotein complex with the catalytic and regulatory subunits of protein kinase CK2 and protein phosphatase 2A. Within this complex, CK2 phosphorylates calmodulin at threonine 80, reducing by 5-fold the apparent Ca2+ sensitivity and accelerating channel deactivation. The results show that native SK channels are polyprotein complexes and demonstrate that the balance between kinase and phosphatase activities within the protein complex shapes the hyperpolarizing response mediated by SK channels.


Assuntos
Cálcio/metabolismo , Ativação do Canal Iônico/fisiologia , Canais de Potássio Cálcio-Ativados , Canais de Potássio/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Trifosfato de Adenosina/farmacologia , Animais , Animais Recém-Nascidos , Western Blotting/métodos , Encéfalo/citologia , Encéfalo/metabolismo , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Calmodulina/metabolismo , Caseína Quinase II , Membrana Celular/metabolismo , Cromatografia de Afinidade/métodos , Cóclea/metabolismo , Relação Dose-Resposta a Droga , Interações Medicamentosas , Eletroforese em Gel Bidimensional/métodos , Imuno-Histoquímica/métodos , Magnésio/farmacologia , Espectrometria de Massas/métodos , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Transgênicos , Microscopia Confocal/métodos , Mutagênese/fisiologia , Mutação , Oocistos , Técnicas de Patch-Clamp/métodos , Fosfoproteínas Fosfatases/metabolismo , Fosforilação , Ligação Proteica , Proteína Fosfatase 2 , Subunidades Proteicas/metabolismo , Ratos , Canais de Potássio Ativados por Cálcio de Condutância Baixa , Espermina/farmacologia , Sinaptofisina/metabolismo , Fatores de Tempo , Técnicas do Sistema de Duplo-Híbrido , Xenopus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA