Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Heliyon ; 10(1): e22095, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38249111
3.
Adv Colloid Interface Sci ; 321: 103007, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37812992

RESUMO

It is well known that metal-organic framework (MOF) nanostructures have unique characteristics such as high porosity, large surface areas and adjustable functionalities, so they are ideal candidates for developing drug delivery systems (DDSs) as well as theranostic platforms in cancer treatment. Despite the large number of MOF nanostructures that have been discovered, conventional MOF-derived nanosystems only have a single biofunctional MOF source with poor colloidal stability. Accordingly, developing core-shell MOF nanostructures with good colloidal stability is a useful method for generating efficient drug delivery, multimodal imaging and synergistic therapeutic systems. The preparation of core-shell MOF nanostructures has been done with a variety of materials, but inorganic nanoparticles (NPs) are highly effective for drug delivery and imaging-guided tumor treatment. Herein, we aimed to overview the synthesis of core-shell inorganic NP@MOF nanostructures followed by the application of core-shell MOFs derived from magnetic, quantum dots (QDs), gold (Au), and gadolinium (Gd) NPs in drug delivery and imaging-guided tumor treatment. Afterward, we surveyed different factors affecting prolonged drug delivery and cancer therapy, cellular uptake, biocompatibility, biodegradability, and enhanced permeation and retention (EPR) effect of core-shell MOFs. Last but not least, we discussed the challenges and the prospects of the field. We envision this article may hold great promise in providing valuable insights regarding the application of hybrid nanostructures as promising and potential candidates for multimodal imaging-guided combination cancer therapy.


Assuntos
Estruturas Metalorgânicas , Nanoestruturas , Neoplasias , Humanos , Estruturas Metalorgânicas/química , Sistemas de Liberação de Medicamentos , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Imagem Multimodal
4.
J Nanobiotechnology ; 21(1): 136, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37101280

RESUMO

It is essential to develop ultrasensitive biosensors for cancer detection and treatment monitoring. In the development of sensing platforms, metal-organic frameworks (MOFs) have received considerable attention as potential porous crystalline nanostructures. Core-shell MOF nanoparticles (NPs) have shown different diversities, complexities, and biological functionalities, as well as significant electrochemical (EC) properties and potential bio-affinity to aptamers. As a result, the developed core-shell MOF-based aptasensors serve as highly sensitive platforms for sensing cancer biomarkers with an extremely low limit of detection (LOD). This paper aimed to provide an overview of different strategies for improving selectivity, sensitivity, and signal strength of MOF nanostructures. Then, aptamers and aptamers-modified core-shell MOFs were reviewed to address their functionalization and application in biosensing platforms. Additionally, the application of core-shell MOF-assisted EC aptasensors for detection of several tumor antigens such as prostate-specific antigen (PSA), carbohydrate antigen 15-3 (CA15-3), carcinoembryonic antigen (CEA), human epidermal growth factor receptor-2 (HER2), cancer antigen 125 (CA-125), cytokeratin 19 fragment (CYFRA21-1), and other tumor markers were discussed. In conclusion, the present article reviews the advancement of potential biosensing platforms toward the detection of specific cancer biomarkers through the development of core-shell MOFs-based EC aptasensors.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Estruturas Metalorgânicas , Nanoestruturas , Masculino , Humanos , Estruturas Metalorgânicas/química , Biomarcadores Tumorais , Nanoestruturas/química , Aptâmeros de Nucleotídeos/química , Limite de Detecção
5.
Int J Biol Macromol ; 240: 124441, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37060978

RESUMO

In the biological systems, exposure to nanoparticles (NPs) can cause complicated interactions with proteins, the formation of protein corona and structural changes to proteins. These changes depend not only on NP physicochemical properties, but also on the intrinsic stability of protein molecules. Although, the formation of protein corona on the surface of NPs and the underlying mechanisms have been fully explored in various studies, no comprehensive review has discussed the direct biochemical and biophysical interactions between NPs and blood proteins, particularly transferrin. In this review, we first discussed the interaction of NPs with proteins to comprehend the effects of physicochemical properties of NPs on protein structure. We then overviewed the transferrin structure and its direct interaction with NPs to explore transferrin stability and its iron ion (Fe3+) release behavior. Afterwards, we surveyed the various biological functions of transferrin, such as Fe3+ binding, receptor binding, antibacterial activity, growth, differentiation, and coagulation, followed by the application of transferrin-modified NPs in the development of drug delivery systems for cancer therapy. We believe that this study can provide useful insight into the design and development of bioconjugates containing NP-transferrin for potential biomedical applications.


Assuntos
Nanopartículas , Coroa de Proteína , Transferrina/química , Coroa de Proteína/química , Nanopartículas/química , Ferro/metabolismo , Ligação Proteica
6.
Pharmacol Res ; 190: 106732, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36931542

RESUMO

High mobility group A 2 (HMGA2) is a protein that modulates the structure of chromatin in the nucleus. Importantly, aberrant expression of HMGA2 occurs during carcinogenesis, and this protein is an upstream mediator of cancer hallmarks including evasion of apoptosis, proliferation, invasion, metastasis, and therapy resistance. HMGA2 targets critical signaling pathways such as Wnt/ß-catenin and mTOR in cancer cells. Therefore, suppression of HMGA2 function notably decreases cancer progression and improves outcome in patients. As HMGA2 is mainly oncogenic, targeting expression by non-coding RNAs (ncRNAs) is crucial to take into consideration since it affects HMGA2 function. MicroRNAs (miRNAs) belong to ncRNAs and are master regulators of vital cell processes, which affect all aspects of cancer hallmarks. Long ncRNAs (lncRNAs) and circular RNAs (circRNAs), other members of ncRNAs, are upstream mediators of miRNAs. The current review intends to discuss the importance of the miRNA/HMGA2 axis in modulation of various types of cancer, and mentions lncRNAs and circRNAs, which regulate this axis as upstream mediators. Finally, we discuss the effect of miRNAs and HMGA2 interactions on the response of cancer cells to therapy. Regarding the critical role of HMGA2 in regulation of critical signaling pathways in cancer cells, and considering the confirmed interaction between HMGA2 and one of the master regulators of cancer, miRNAs, targeting miRNA/HMGA2 axis in cancer therapy is promising and this could be the subject of future clinical trial experiments.


Assuntos
MicroRNAs , Neoplasias , RNA Longo não Codificante , Humanos , Linhagem Celular Tumoral , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , RNA Circular/genética , RNA Longo não Codificante/metabolismo , RNA não Traduzido/genética , Proteína HMGA2/metabolismo
7.
Int J Biol Macromol ; 225: 544-556, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36395949

RESUMO

It has long been known that inorganic nanoparticles (NPs) can interact with biological macromolecules and show a wider range of biomedical characteristics, including antibacterial, anticancer and antioxidant effects, which cannot be mimicked by their bulky counterparts. It is of great importance in their biomedical applications to study DNA damage in bacterial and cancer cells to develop biocompatible therapeutic nano-platforms derived from inorganic NPs. Therefore, to determine how DNA interacts with inorganic NPs serving as therapeutic agents, thermodynamic and structural studies are essential for an understanding of those mechanisms, thereby allowing for their modulation and manipulation of nano-bio interface. In this paper, we aimed to overview the biophysical techniques typically employ to study DNA-NP interactions as well as the mechanistic aspects of the interaction between different inorganic NPs and calf thymus DNA (CT-DNA), a well-known laboratory model, followed by a survey of different parameters affecting the interaction of NPs and DNA. The molecular interactions between inorganic NPs and DNA were then discussed in relation to their anticancer and antibacterial properties. As a final point, we discussed challenges and future perspectives to put forward the possible applications of the field. In conclusion, the interaction between NPs and DNA needs to be studied more deeply in order to develop potential NP-based anticancer and antibacterial platforms for future clinical applications.


Assuntos
Nanopartículas , Nanopartículas/química , Antibacterianos/química , DNA/química , Termodinâmica , Bactérias
8.
Pharmaceutics ; 14(10)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36297598

RESUMO

At the Nanomedicine Innovation Center (NICE) at the Erasmus MC in Rotterdam, we have approached the treatment of cancer by starting with a vision of first establishing a platform that enables us to overcome the low levels of drugs delivered to tumors and the issue of dose-limiting toxicity. Showing that a reduction of the volume of distribution, and a lowering of toxicity and side-effects, accompanied by augmented intratumoral drug delivery, could change outcomes in patients, paved the way to target, not only localized disease, but also systemic and metastasized cancers. In particular, the detailed studies with intravital microscopy we performed at NICE provided us with the necessary insights and affected to a large extent our program on liposome-based cancer therapy. Together with our experience with the loco-regional treatment of cancer, this helped us to develop a program that focused on the subsequent aspects discussed here. We recognized that passive accumulation of nanoparticles was not as effective as previously believed and undertook to improve the local accumulation by changing the tumor pathophysiology and, in particular, the vascular permeability. We added the targeting of liposomes using vascular and tumor directed moieties, to improve cellular drug delivery. To improve payload delivery, we studied the modification of liposomes with phospholipids that help passive drug release and augment cellular accumulation. Second, and importantly, modification of liposomes was undertaken, to enable triggered drug release. The capability for modifying liposomes to respond to a trigger, and the ability to now apply an external trigger (e.g., hyperthermia) and specifically reach the tumor volume, resulted in the current smart drug delivery systems. Our experience at NICE, after a few decades of research on lipid-based nanoparticles, shows that, after the first liposomal formulation registered for clinical application in cancer therapy, further developments quickly followed, while further clinical applications lagged behind. Now we need to focus on and make the next steps towards the clinic, to fulfil the promise that is found there.

9.
J Control Release ; 348: 127-147, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35660636

RESUMO

Nanoparticles (NPs) have been used in numerous applications as anticancer, antibacterial and antioxidant agents. Artificial engineering of protein interactions with NPs in biological systems is crucial to develop potential NPs for drug delivery and cancer nanotherapy. The protein corona (PC) on the NP surface, displays an interface between biomacromolecules and NPs, governing their pharmacokinetics and pharmacodynamics. Upon interaction of proteins with the NPs, their surface features are modified and they can easily be removed from the circulation by the mononuclear phagocytic system (MPS). PC properties heavily depend on the biological microenvironment and NP physicochemical parameters. Based on this context, we have surveyed different approaches that have been used for artificial engineering of the PC composition on NP surfaces. We discussed the effects of NP size, shape, surface modifications (PEGylation, self-peptide, other polymers), and protein pre-coating on the PC properties. Additionally, other factors including protein source and structure, intravenous injection and the subsequent shear flow, plasma protein gradients, temperature and local heat transfer, and washing media were considered in the context of their effects on the PC properties and overall target cellular effects. Moreover, the effects of NP-PC complexes on cancer cells based on cellular interactions, organization of intracellular PC (IPC), targeted drug delivery (TDD) and regulation of burst drug release profile of nanoplatforms, enhanced biocompatibility, and clinical applications were discussed followed by challenges and future perspective of the field. In conclusion, this paper can provide useful information to manipulate PC properties on the NP surface, thus trying to provide a literature survey to shorten their shipping from preclinical to clinical trials and to lay the basis for a personalized PC.


Assuntos
Nanopartículas , Neoplasias , Coroa de Proteína , Liberação Controlada de Fármacos , Humanos , Nanopartículas/química , Neoplasias/tratamento farmacológico , Polímeros/metabolismo , Coroa de Proteína/metabolismo , Proteínas/metabolismo , Microambiente Tumoral
10.
Cancers (Basel) ; 14(12)2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35740534

RESUMO

The enhanced permeability and retention (EPR) effect in cancer treatment is one of the key mechanisms that enables drug accumulation at the tumor site. However, despite a plethora of virus/inorganic/organic-based nanocarriers designed to rely on the EPR effect to effectively target tumors, most have failed in the clinic. It seems that the non-compliance of research activities with clinical trials, goals unrelated to the EPR effect, and lack of awareness of the impact of solid tumor structure and interactions on the performance of drug nanocarriers have intensified this dissatisfaction. As such, the asymmetric growth and structural complexity of solid tumors, physicochemical properties of drug nanocarriers, EPR analytical combination tools, and EPR description goals should be considered to improve EPR-based cancer therapeutics. This review provides valuable insights into the limitations of the EPR effect in therapeutic efficacy and reports crucial perspectives on how the EPR effect can be modulated to improve the therapeutic effects of nanomedicine.

11.
Int J Biol Macromol ; 212: 358-369, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35618086

RESUMO

Targeting microtubules (MTs), dynamic and stable proteins in cells, by different ligands have been reported to be a potential strategy to combat cancer cells. Inorganic nanoparticles (NPs) have been widely used as anticancer, antibacterial and free radical scavenging agents, where they come in contact with biological macromolecules. The interaction between the NPs and biological macromolecules like MTs frequently occurs through different mechanisms. A prerequisite for a detailed exploration of MT structures and functions for biomedical applications like cancer therapy is to investigate profoundly the mechanisms involved in MT-NP interactions, for which the full explanation and characterization of the parameters that are responsible for the formation of a NP-protein complex are crucial. Therefore, in view of the fact that the goal of the rational NP-based future drug design and new therapies is to rely on the information of the structural details and protein-NPs binding mechanisms to manipulate the process of developing new potential drugs, a comprehensive investigation of the essence of the molecular recognition/interaction is also of considerable importance. In the present review, first, the microtubule (MT) structure and its binding sites upon interaction with MT stabilizing agents (MSAs) and MT destabilizing agents (MDAs) are introduced and rationalized. Next, MT targeting in cancer therapy and interaction of NPs with MTs are discussed. Furthermore, interaction of NPs with proteins and the manipulation of protein corona (PC), experimental techniques and direct interaction of NPs with MTs, are discussed, and finally the challenges and future perspective of the field are introduced. We envision this review can provide useful information on the manipulation of the MT lattice for the progress of cancer nanomedicine.


Assuntos
Nanopartículas , Neoplasias , Coroa de Proteína , Humanos , Microtúbulos/metabolismo , Nanomedicina , Nanopartículas/química , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Coroa de Proteína/metabolismo , Proteínas/química
12.
Spectrochim Acta A Mol Biomol Spectrosc ; 278: 121372, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-35588606

RESUMO

In this study, the acceleratory effect of magnesium oxide nanoparticles (MgO NPs) on the amyloid fibrillization of human tau protein, a major protein involved in the onset of Alzheimer's disease (AD) was investigated. The MgO NPs were fabricated through laser ablation synthesis in solution (LASiS), well-characterized, and explored further for tau aggregation and relevant neurotoxicity by different assays. The results showed that the MgO NPs have a size of around 30 nm, a hydrodynamic radius of 57.09 nm, and a zeta potential of -18.06 mV. The data from ThT and ANS fluorescence-based assays along with circular dichroism (CD) spectroscopy clearly indicated that MgO NPs could significantly promote tau fibrillization, concentration-dependently. Considering the acceleratory effect of MgO NPs against tau fibrillization, cellular assays including cell viability, reactive oxygen species (ROS), and caspase-3 assays indicated that the neurotoxicity of tau amyloid fibrils formed with MgO NPs was higher than that of tau samples aged alone against N2a neuron-like cells. Therefore, it was concluded that the interaction of MgO NPs with tau can lead to acceleration of tau aggregation and underlying neurotoxicity. This study, then can provide useful information about the direct effect of MgO NPs against memory proteins and subsequent adverse effects.


Assuntos
Terapia a Laser , Nanopartículas , Idoso , Amiloide , Humanos , Óxido de Magnésio/química , Nanopartículas/química , Nanopartículas/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Proteínas tau
13.
J Nanobiotechnology ; 20(1): 153, 2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35331244

RESUMO

Nowadays, nano-/micro-motors are considered as powerful tools in different areas ranging from cleaning all types of contaminants, to development of Targeted drug delivery systems and diagnostic activities. Therefore, the development and application of nano-/micro-motors based on metal-organic frameworks with nanozyme activity (abbreviated as: MOF-NZs) in biomedical activities have received much interest recently. Therefore, after investigating the catalytic properties and applications of MOF-NZs in the treatment of cancer, this study intends to point out their key role in the production of biocompatible nano-/micro-motors. Since reducing the toxicity of MOF-NZ nano-/micro-motors can pave the way for medical activities, this article examines the methods of making biocompatible nanomotors to address the benefits and drawbacks of the required propellants. In the following, an analysis of the amplified directional motion of MOF-NZ nano-/micro-motors under physiological conditions is presented, which can improve the motor behaviors in the propulsion function, conductivity, targeting, drug release, and possible elimination. Meanwhile, by explaining the use of MOF-NZ nano-/micro-motors in the treatment of cancer through the possible synergy of nanomotors with different therapies, it was revealed that MOF-NZ nano-/micro-motors can be effective in the treatment of cancer. Ultimately, by analyzing the potential challenges of MOF-NZ nano-/micro-motors in the treatment of cancers, we hope to encourage researchers to develop MOF-NZs-based nanomotors, in addition to opening up new ideas to address ongoing problems.


Assuntos
Estruturas Metalorgânicas , Neoplasias , Benchmarking , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Condutividade Elétrica , Estruturas Metalorgânicas/química , Neoplasias/tratamento farmacológico
14.
Int J Biol Macromol ; 207: 121-129, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35259430

RESUMO

Protein oligomerization is involved in the progression of Alzheimer's disease (AD). In general, a particle that can accelerate protein oligomerization should be considered a toxic material. Several studies reported the progress of nanoparticles (NPs) such as copper oxide (CuO) in biomedical platforms, however, they may have the ability to promote the protein oligomerization process. Here, we aimed to study the effect of CuO NPs on amyloid ß1-42 (Aß1-42) oligomerization and relevant neurotoxicity. CuO NPs were synthesized by precipitation technique and characterized by several methods such as ThT, Congo red, CD spectroscopic methods, and TEM imaging. The outcomes indicated that the fabricated CuO NPs with a size of around 50 nm led to a remarkable acceleration in Aß1-42 oligomerization in a concentration-dependent manner through shortening the nucleation step and promoting the fibrillization rate. Moreover, cellular assays revealed that Aß1-42 oligomers aged with CuO NPs were more toxic than Aß1-42 oligomers untreated against SH-SY5Y cells in triggering cell mortality, membrane leakage, oxidative stress, and apoptosis. In conclusion, this study provides important information about the adverse effects of CuO NPs against proteins in the central nervous system to promote the formation of cytotoxic oligomers.


Assuntos
Doença de Alzheimer , Cobre , Nanopartículas Metálicas , Peptídeos beta-Amiloides/metabolismo , Linhagem Celular Tumoral , Cobre/química , Humanos , Nanopartículas Metálicas/química , Óxidos
15.
Biomed Pharmacother ; 146: 112531, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34906771

RESUMO

Despite the promising medicinal properties, berberine (BBR), due to its relatively poor solubility in plasma, low bio-stability and limited bioavailability is not used broadly in clinical stages. Due to these drawbacks, drug delivery systems (DDSs) based on nanoscale natural polysaccharides, are applied to address these concerns. Natural polymers are biodegradable, non-immunogenic, biocompatible, and non-toxic agents that are capable of trapping large amounts of hydrophobic compounds in relatively small volumes. The use of nanoscale natural polysaccharide improves the stability and pharmacokinetics of the small molecules and, consequently, increases the therapeutic effects and reduces the side effects of the small molecules. Therefore, this paper presents an overview of the different methods used for increasing the BBR solubility and bioavailability. Afterwards, the pharmacodynamic and pharmacokinetic of BBR nanostructures were discussed followed by the introduction of natural polysaccharides of plant (cyclodextrines, glucomannan), the shells of crustaceans (chitosan), and the cell wall of brown marine algae (alginate)-based origins used to improve the dissolution rate of poorly soluble BBR and their anticancer and antibacterial properties. Finally, the anticancer and antibacterial mechanisms of free BBR and BBR nanostructures were surveyed. In conclusion, this review may pave the way for providing some useful data in the development of BBR-based platforms for clinical applications.


Assuntos
Berberina , Quitosana , Nanoestruturas , Antibacterianos/farmacologia , Berberina/química , Disponibilidade Biológica , Quitosana/química
16.
Biomed Pharmacother ; 146: 112251, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34916087

RESUMO

Thyroid cancer (TC) is the most prevalent malignancy of the endocrine system. Although there are few treatment choices for individuals with TC, determining the underlying mechanisms is essential for treatment due to the complex carcinogenesis of this disease. Recent pieces of evidence suggest that non-coding RNAs (ncRNAs) play an important role in the progression of TC. Nevertheless, the role and function of the complex regulatory interactions between multiple types of ncRNAs in the growth of this malignancy remains unknown. Competing endogenous RNA (ceRNA) is a recently found mechanism that suggests regulatory interactions between various RNAs. It has been proposed that some ncRNAs, such as long noncoding RNAs (lncRNAs), pseudogenes and circular RNAs (circRNAs), can share microRNA (miRNA) response elements, which may influence miRNA interaction with target RNAs and by doing so modulate gene expression at the transcriptional level. According to the analysis of relevant literature, numerous ceRNA networks are deregulated during TC development, metastasis, migration, invasion, epithelial-mesenchymal transition (EMT), and drug resistance. As a result, learning more about these deregulations could lead to earlier diagnosis of TC patients and the discovery of effective therapeutic targets. In this review we outline the current body of information regarding the essential roles of ceRNA networks and highlight the emerging roles of some newfound ceRNA members in different TC hallmarks.


Assuntos
RNA , Neoplasias da Glândula Tireoide/genética , Animais , Resistencia a Medicamentos Antineoplásicos/genética , Transição Epitelial-Mesenquimal , Humanos , Transdução de Sinais
17.
J Control Release ; 338: 341-357, 2021 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-34428480

RESUMO

Microneedle arrays have recently received much attention as cancer detection and treatment platforms, because invasive injections and detection of the biopsy are not needed, and drug metabolism by the liver, as well as adverse effects of systemic drug administration, are diminished. Microneedles have been used for diagnosis, vaccination, and in targeted drug delivery of breast cancer. In this review, we summarize the recent progress in diagnosis and targeted drug delivery for breast cancer treatment, using microneedle arrays to deliver active molecules through the skin. The results not only suggest that health and well-being of patients are improved, but also that microneedle arrays can deliver anticancer compounds in a relatively noninvasive manner, based on body weight, breast tumor size, and circulation time of the drug. Moreover, microneedles could allow simultaneous loading of multiple drugs and enable controlled release, thus effectively optimizing or preventing drug-drug interactions. This review is designed to encourage the use of microneedles for diagnosis and treatment of breast cancer, by describing general properties of microneedles, materials used for construction, mechanism of action, and principal benefits. Ongoing challenges and future perspectives for the application of microneedle array systems in breast cancer detection and treatment are highlighted.


Assuntos
Neoplasias da Mama , Administração Cutânea , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Feminino , Humanos , Microinjeções , Agulhas , Pele/metabolismo
18.
J Adv Res ; 30: 171-184, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34026294

RESUMO

Background: Heterocyclic compounds have always been used as a core portion in the development of anticancer drugs. However, there is a pressing need for developing inexpensive and simple alternatives to high-cost and complex chemical agents-based catalysts for large-scale production of heterocyclic compounds. Also, development of some smart platforms for cancer treatment based on nanoparticles (NPs) which facilitate Fenton reaction have been widely explored by different scientists. Magnetic NPs not only can serve as catalysts in the synthesis of heterocyclic compounds with potential anticancer properties, but also are widely used as smart agents in targeting cancer cells and inducing Fenton reactions. Aim of Review: Therefore, in this review we aim to present an updated summary of the reports related to the main clinical or basic application and research progress of magnetic NPs in cancer as well as their application in the synthesis of heterocyclic compounds as potential anticancer drugs. Afterwards, specific tumor microenvironment (TME)-responsive magnetic nanocatalysts for cancer treatment through triggering Fenton-like reactions were surveyed. Finally, some ignored factors in the design of magnetic nanocatalysts- triggered Fenton-like reaction, challenges and future perspective of magnetic nanocatalysts-assisted synthesis of heterocyclic compounds and selective cancer therapy were discussed.Key Scientific Concepts of Review:This review may pave the way for well-organized translation of magnetic nanocatalysts in cancer therapy from the bench to the bedside.


Assuntos
Antineoplásicos/farmacologia , Compostos Heterocíclicos/química , Compostos Heterocíclicos/farmacologia , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/uso terapêutico , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/química , Catálise , Humanos , Peróxido de Hidrogênio/química , Hipertermia Induzida/métodos , Ferro/química , Fenômenos Magnéticos , Camundongos , Neoplasias/metabolismo , Fototerapia/métodos , Microambiente Tumoral/efeitos dos fármacos
19.
Int J Biol Macromol ; 181: 605-611, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-33766591

RESUMO

The outbreaks of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) in 2019, have highlighted the concerns about the lack of potential vaccines or antivirals approved for inhibition of CoVs infection. SARS-CoV-2 RNA dependent RNA polymerase (RdRp) which is almost preserved across different viral species can be a potential target for development of antiviral drugs, including nucleoside analogues (NA). However, ExoN proofreading activity of CoVs leads to their protection from several NAs. Therefore, potential platforms based on the development of efficient NAs with broad-spectrum efficacy against human CoVs should be explored. This study was then aimed to present an overview on the development of NAs-based drug repurposing for targeting SARS-CoV-2 RdRp by computational analysis. Afterwards, the clinical development of some NAs including Favipiravir, Sofosbuvir, Ribavirin, Tenofovir, and Remdesivir as potential inhibitors of RdRp, were surveyed. Overall, exploring broad-spectrum NAs as promising inhibitors of RdRp may provide useful information about the identification of potential antiviral repurposed drugs against SARS-CoV-2.


Assuntos
Tratamento Farmacológico da COVID-19 , Nucleosídeos/farmacologia , RNA Polimerase Dependente de RNA/metabolismo , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacologia , Alanina/análogos & derivados , Alanina/farmacologia , Antivirais/farmacologia , COVID-19/virologia , Biologia Computacional/métodos , Reposicionamento de Medicamentos/métodos , Humanos , Modelos Moleculares , RNA Polimerase Dependente de RNA/antagonistas & inibidores
20.
J Control Release ; 333: 91-106, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33774120

RESUMO

The bioprinting technique with specialized tissue production allows the study of biological, physiological, and behavioral changes of cancerous and non-cancerous tissues in response to pharmacological compounds in personalized medicine. To this end, to evaluate the efficacy of anticancer drugs before entering the clinical setting, tissue engineered 3D scaffolds containing breast cancer and derived from the especially patient, similar to the original tissue architecture, can potentially be used. Despite recent advances in the manufacturing of 3D bioprinted breast cancer tissue (BCT), many studies still suffer from reproducibility primarily because of the uncertainty of the materials used in the scaffolds and lack of printing methods. In this review, we present an overview of the breast cancer environment to optimize personalized treatment by examining and identifying the physiological and biological factors that mimic BCT. We also surveyed the materials and techniques related to 3D bioprinting, i.e, 3D bioprinting systems, current strategies for fabrication of 3D bioprinting tissues, cell adhesion and migration in 3D bioprinted BCT, and 3D bioprinted breast cancer metastasis models. Finally, we emphasized on the prospective future applications of 3D bioprinted cancer models for rapid and accurate drug screening in breast cancer.


Assuntos
Bioimpressão , Neoplasias da Mama , Neoplasias da Mama/tratamento farmacológico , Feminino , Humanos , Impressão Tridimensional , Estudos Prospectivos , Reprodutibilidade dos Testes , Engenharia Tecidual , Alicerces Teciduais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA