Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mucosal Immunol ; 14(2): 366-376, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32814824

RESUMO

In addition to their well characterized role in mediating IgE-dependent allergic diseases, aberrant accumulation and activation of mast cells (MCs) is associated with many non-allergic inflammatory diseases, whereby their activation is likely triggered by non-IgE stimuli (e.g., IL-33). Siglec-8 is an inhibitory receptor expressed on MCs and eosinophils that has been shown to inhibit IgE-mediated MC responses and reduce allergic inflammation upon ligation with a monoclonal antibody (mAb). Herein, we evaluated the effects of an anti-Siglec-8 mAb (anti-S8) in non-allergic disease models of experimental cigarette-smoke-induced chronic obstructive pulmonary disease and bleomycin-induced lung injury in Siglec-8 transgenic mice. Therapeutic treatment with anti-S8 inhibited MC activation and reduced recruitment of immune cells, airway inflammation, and lung fibrosis. Similarly, using a model of MC-dependent, IL-33-induced inflammation, anti-S8 treatment suppressed neutrophil influx, and cytokine production through MC inhibition. Transcriptomic profiling of MCs further demonstrated anti-S8-mediated downregulation of MC signaling pathways induced by IL-33, including TNF signaling via NF-κB. Collectively, these findings demonstrate that ligating Siglec-8 with an antibody reduces non-allergic inflammation and inhibits IgE-independent MC activation, supporting the evaluation of an anti-Siglec-8 mAb as a therapeutic approach in both allergic and non-allergic inflammatory diseases in which MCs play a role.


Assuntos
Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos B/metabolismo , Lectinas/metabolismo , Mastócitos/imunologia , Pneumonia/imunologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Sistema Respiratório/imunologia , Animais , Anticorpos Monoclonais/metabolismo , Antígenos CD/genética , Antígenos de Diferenciação de Linfócitos B/genética , Degranulação Celular , Fumar Cigarros , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Imunoglobulina E/metabolismo , Interleucina-33/metabolismo , Lectinas/genética , Camundongos , Camundongos Transgênicos , NF-kappa B/metabolismo , Ativação de Neutrófilo , Transdução de Sinais
2.
Int Arch Allergy Immunol ; 180(2): 91-102, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31401630

RESUMO

INTRODUCTION: Pathologic accumulation and activation of mast cells and eosinophils are implicated in allergic and inflammatory diseases. Sialic acid-binding immunoglobulin-like lectin (Siglec)-8 is an inhibitory receptor selectively expressed on mast cells, eosinophils and, at a lower extent, basophils. When engaged with an antibody, Siglec-8 can induce apoptosis of activated eosinophils and inhibit mast cell activation. AK002 is a humanized, non-fucosylated IgG1 anti-Siglec-8 antibody undergoing clinical investigation for treatment of allergic, inflammatory, and proliferative diseases. Here we examine the human tissue selectivity of AK002 and evaluate the in vitro, ex vivo, and in vivo activity of AK002 on eosinophils and mast cells. METHODS: The affinity of AK002 for Siglec-8 and CD16 was determined by biolayer interferometry. Ex vivo activity of AK002 on human eosinophils from blood and dissociated human tissue was tested in apoptosis and antibody-dependent cell-mediated cytotoxicity (ADCC) assays. The in vivo activity of a murine precursor of AK002 (mAK002) was tested in a passive systemic anaphylaxis (PSA) humanized mouse model. RESULTS: AK002 bound selectively to mast cells, eosinophils and, at a lower level, to basophils in human blood and tissue and not to other cell types examined. AK002 induced apoptosis of interleukin-5-activated blood eosinophils and demonstrated potent ADCC activity against blood eosinophils in the presence of natural killer cells. AK002 also significantly reduced eosinophils in dissociated human lung tissue. Furthermore, mAK002 prevented PSA in humanized mice through mast cell inhibition. CONCLUSION: AK002 selectively evokes potent apoptotic and ADCC activity against eosinophils and prevents systemic anaphylaxis through mast cell inhibition.


Assuntos
Anafilaxia/prevenção & controle , Anticorpos Monoclonais Humanizados/imunologia , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Antígenos CD/imunologia , Antígenos de Diferenciação de Linfócitos B/imunologia , Eosinófilos/imunologia , Lectinas/imunologia , Mastócitos/imunologia , Anafilaxia/imunologia , Animais , Anticorpos Monoclonais Humanizados/uso terapêutico , Basófilos/imunologia , Humanos , Camundongos , Ácido N-Acetilneuramínico/imunologia , Receptores de IgG/imunologia
3.
J Allergy Clin Immunol ; 138(3): 769-779, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27139822

RESUMO

BACKGROUND: Mast cells are a critical component of allergic responses in humans, and animal models that allow the in vivo investigation of their contribution to allergy and evaluation of new human-specific therapeutics are urgently needed. OBJECTIVE: To develop a new humanized mouse model that supports human mast cell engraftment and human IgE-dependent allergic responses. METHODS: This model is based on the NOD-scid IL2rg(null)SCF/GM-CSF/IL3 (NSG-SGM3) strain of mice engrafted with human thymus, liver, and hematopoietic stem cells (termed Bone marrow, Liver, Thymus [BLT]). RESULTS: Large numbers of human mast cells develop in NSG-SGM3 BLT mice and populate the immune system, peritoneal cavity, and peripheral tissues. The human mast cells in NSG-SGM3 BLT mice are phenotypically similar to primary human mast cells and express CD117, tryptase, and FcεRI. These mast cells undergo degranulation in an IgE-dependent and -independent manner, and can be readily cultured in vitro for additional studies. Intradermal priming of engrafted NSG-SGM3 mice with a chimeric IgE containing human constant regions resulted in the development of a robust passive cutaneous anaphylaxis response. Moreover, we describe the first report of a human mast cell antigen-dependent passive systemic anaphylaxis response in primed mice. CONCLUSIONS: NSG-SGM3 BLT mice provide a readily available source of human mast cells for investigation of mast cell biology and a preclinical model of passive cutaneous anaphylaxis and passive systemic anaphylaxis that can be used to investigate the pathogenesis of human allergic responses and to test new therapeutics before their advancement to the clinic.


Assuntos
Anafilaxia/imunologia , Modelos Animais de Doenças , Mastócitos/imunologia , Anafilaxia Cutânea Passiva/imunologia , Animais , Transplante de Células-Tronco Hematopoéticas , Humanos , Imunoglobulina E/imunologia , Transplante de Fígado , Camundongos , Timo/transplante
4.
Mol Ther ; 20(11): 2180-9, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22871662

RESUMO

The feasibility of allogeneic transplantation, without myeloablation or post-transplant immunosuppression, was tested using in vivo chemoselection of allogeneic hematopoietic stem cells (HSCs) after transduction with a novel tricistronic lentiviral vector (MGMT(P140K)-2A-GFP-IRES-TK (MAGIT)). This vector contains P140K-O(6)-methylguanine-methyltransferase (MGMT(P140K)), HSV-thymidine kinase (TK(HSV)), and enhanced green fluorescent protein (eGFP) enabling (i) in vivo chemoselection of HSC by conferring resistance to benzylguanine (BG), an inhibitor of endogenous MGMT, and to chloroethylating agents such as 1,3-bis(2-chloroethyl)nitrosourea (BCNU) and, (ii) depletion of proliferating cells such as malignant clones or transduced donor T cells mediating graft versus host disease (GVHD), by expression of the suicide gene TK(HSV) and Ganciclovir (GCV) administration. Non-myeloablative transplantation of transduced, syngeneic, lineage-depleted (Lin(-)) BM in neonates resulted in 0.67% GFP(+) mononuclear cells in peripheral blood. BG/BCNU chemoselection, 4 and 8 weeks post-transplant, produced 50-fold donor cell enrichment. Transplantation and chemoselection of major histocompatibility complex (MHC)-mismatched MAGIT-transduced Lin(-) BM also produced similar expansion for >40 weeks. The efficacy of this allotransplant approach was validated in Hbb(th3) heterozygous mice by correction of ß-thalassemia intermedia, without toxicity or GVHD. Negative selection, by administration of GCV resulted in donor cell depletion without graft ablation, as re-expansion of donor cells was achieved with BG/BCNU treatment. These studies show promise for developing non-ablative allotransplant approaches using in vivo positive/negative selection.


Assuntos
Facilitação Imunológica de Enxerto , Rejeição de Enxerto/prevenção & controle , Transplante de Células-Tronco Hematopoéticas/métodos , Talassemia beta/terapia , Animais , Animais Recém-Nascidos , Antivirais/farmacologia , Carmustina/farmacologia , Proliferação de Células , Separação Celular , Forma Celular , Sobrevivência Celular/efeitos dos fármacos , Metilases de Modificação do DNA/antagonistas & inibidores , Metilases de Modificação do DNA/genética , Enzimas Reparadoras do DNA/antagonistas & inibidores , Enzimas Reparadoras do DNA/genética , Inibidores Enzimáticos/farmacologia , Eritrócitos/patologia , Feminino , Citometria de Fluxo , Ganciclovir/farmacologia , Rejeição de Enxerto/imunologia , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Células HEK293 , Humanos , Lentivirus/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Timidina Quinase/genética , Transdução Genética , Transplante Homólogo , Proteínas Supressoras de Tumor/antagonistas & inibidores , Proteínas Supressoras de Tumor/genética , Proteínas Virais/genética
5.
Immunology ; 132(1): 134-43, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20875076

RESUMO

Tumour pathogenesis is characterized by an immunosuppressive microenvironment that limits the development of effective tumour-specific immune responses. This is in part the result of tumour-dependent recruitment and activation of regulatory cells, such as myeloid-derived suppressor cells and regulatory T cells in the tumour microenvironment and draining lymph nodes. Shedding of gangliosides by tumour cells has immunomodulatory properties, suggesting that gangliosides may be a critical factor in initiating an immunosuppressive microenvironment. To better define the immunomodulatory properties of gangliosides on antigen-specific T-cell activation and development we have developed an in vitro system using ganglioside-treated murine bone-marrow-derived dendritic cells to prime and activate antigen-specific CD4(+) T cells from AND T-cell receptor transgenic mice. Using this system, ganglioside treatment promotes the development of a dendritic cell population characterized by decreased CD86 (B7-2) expression, and decreased interleukin-12 and interleukin-6 production. When these cells are used as antigen-presenting cells, CD4 T cells are primed to proliferate normally, but have a defect in T helper (Th) effector cell development. This defect in Th effector cell responses is associated with the development of regulatory T-cell activity that can suppress the activation of previously primed Th effector cells in a contact-dependent manner. In total, these data suggest that ganglioside-exposed dendritic cells promote regulatory T-cell activity that may have long-lasting effects on the development of tumour-specific immune responses.


Assuntos
Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Gangliosídeos/farmacologia , Linfócitos T Reguladores/imunologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T Reguladores/citologia
6.
Immunol Res ; 44(1-3): 112-26, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19048410

RESUMO

Current approaches for hematopoietic stem cell (HSC) and organ transplantation are limited by donor and host-mediated immune responses to allo-antigens. Application of these therapies is limited by the toxicity of preparative and post-transplant immunosuppressive regimens and a shortage of appropriate HLA-matched donors. We have been exploring two complementary approaches for genetically modifying donor cells that achieve long-term suppression of cellular proteins that elicit host immune responses to mismatched donor antigens, and provide a selective advantage to genetically engineered donor cells after transplantation. The first approach is based on recent advances that make feasible targeted down-regulation of HLA expression. Suppression of HLA expression could help to overcome limitations imposed by extensive HLA polymorphisms that restrict the availability of suitable donors. Accordingly, we have recently investigated whether knockdown of HLA by RNA interference (RNAi) enables allogeneic cells to evade immune recognition. For efficient and stable delivery of short hairpin-type RNAi constructs (shRNA), we employed lentivirus-based gene transfer vectors that integrate into genomic DNA, thereby permanently modifying transduced donor cells. Lentivirus-mediated delivery of shRNA targeting pan-Class I and allele-specific HLA achieved efficient and dose-dependent reduction in surface expression of HLA in human cells, and enhanced resistance to allo-reactive T lymphocyte-mediated cytotoxicity, while avoiding non-MHC restricted killing. Complementary strategies for genetic engineering of HSC that would provide a selective advantage for transplanted donor cells and enable successful engraftment with less toxic preparative and immunosuppressive regimens would increase the numbers of individuals to whom HLA suppression therapy could be offered. Our second strategy is to provide a mechanism for in vivo selection of genetically modified HSC and other donor cells. We have uniquely combined transplantation during the neonatal period, when tolerance may be more readily achieved, with a positive selection strategy for in vivo amplification of drug-resistant donor HSC. This model system enables the evaluation of mechanisms of tolerance induction to neo-antigens, and allogeneic stem cells during immune ontogeny. HSC are transduced ex vivo by lentivirus-mediated gene transfer of P140K-O(6)-methylguanine-methyltransferase (MGMT(P140K)). The MGMT(P140K) DNA repair enzyme confers resistance to benzylguanine, an inhibitor of endogenous MGMT, and to chloroethylating agents such as BCNU. In vivo chemoselection enables enrichment of donor cells at the stem cell level. Using complementary approaches of in vivo chemoselection and RNAi-induced silencing of HLA expression may enable the generation of histocompatibility-enhanced, and eventually, perhaps "universally" compatible cellular grafts.


Assuntos
Inativação Gênica , Transplante de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas/imunologia , Antígenos de Histocompatibilidade Classe I/genética , Animais , Carmustina/farmacologia , Metilases de Modificação do DNA/metabolismo , Técnicas de Silenciamento de Genes , Técnicas de Transferência de Genes , Vetores Genéticos , Células-Tronco Hematopoéticas/efeitos dos fármacos , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Camundongos , RNA Interferente Pequeno/genética , Transfecção
7.
J Immunol ; 178(4): 2056-64, 2007 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-17277109

RESUMO

CD45-dependent dephosphorylation of the negative regulatory C-terminal tyrosine of the Src family kinase Lck, promotes efficient TCR signal transduction. However, despite the role of CD45 in positively regulating Lck activity, the distinct phenotypes of CD45 and Lck/Fyn-deficient mice suggest that the role of CD45 in promoting Lck activity may be differentially regulated during thymocyte development. In this study, we have found that the C-terminal tyrosine of Lck (Y505) is markedly hyperphosphorylated in total thymocytes from CD45-deficient mice compared with control animals. In contrast, regulation of the Lck Y505 phosphorylation in purified, double-negative thymocytes is relatively unaffected in CD45-deficient cells. These changes in the role of CD45 in regulating Lck phosphorylation during thymocyte development correlate with changes in coreceptor expression and the presence of coreceptor-associated Lck. Biochemical analysis of coreceptor-associated and nonassociated Lck in thymocytes, and in cell lines varying in CD4 and CD45 expression, indicate that CD45-dependent regulation of Lck Y505 phosphorylation is most evident within the fraction of Lck that is coreceptor associated. In contrast, Lck Y505 phosphorylation that is not coreceptor associated is less affected by the absence of CD45. These data define distinct pools of Lck that are differentially regulated by CD45 during T cell development.


Assuntos
Antígenos Comuns de Leucócito/imunologia , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/imunologia , Processamento de Proteína Pós-Traducional/imunologia , Transdução de Sinais/imunologia , Linfócitos T/imunologia , Timo/imunologia , Animais , Antígenos CD4/biossíntese , Antígenos CD4/imunologia , Diferenciação Celular/imunologia , Linhagem Celular Tumoral , Antígenos Comuns de Leucócito/metabolismo , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Camundongos , Camundongos Mutantes , Fosforilação , Linfócitos T/enzimologia , Timo/crescimento & desenvolvimento
8.
J Immunol ; 175(8): 4927-34, 2005 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-16210594

RESUMO

Cell surface gangliosides are shed by tumors into their microenvironment. In this study they inhibit cellular immune responses, including APC development and function, which is critical for Th1 and Th2 cell development. Using human dendritic cells (DCs) and naive CD4(+) T cells, we separately evaluated Th1 and Th2 development under the selective differentiating pressures of DC1-inducing pertussis toxin (PT) and DC2-inducing cholera toxin (CT). High DC IL-12 production after PT exposure and high DC IL-10 production after CT exposure were observed, as expected. However, when DCs were first preincubated with highly purified G(D1a) ganglioside, up-regulation of costimulatory molecules was blunted, and PT-induced IL-12 production was reduced, whereas CT-induced IL-10 production was increased. The combination of these effects could contribute to a block in the Th1 response. In fact, when untreated naive T cells were coincubated with ganglioside-preincubated, Ag-exposed DCs, naive Th cell differentiation into Th effector cells was reduced. Both the subsequent DC1-induced T cell production of IFN-gamma (Th1 marker) and DC2-induced T cell IL-4 production (Th2) were inhibited. Thus, ganglioside exposure of DC impairs, by at least two distinct mechanisms, the ability to induce Th differentiation, which could adversely affect the development of an effective cellular antitumor immune response.


Assuntos
Diferenciação Celular/fisiologia , Gangliosídeos/fisiologia , Linfócitos T Auxiliares-Indutores/citologia , Linfócitos T Auxiliares-Indutores/fisiologia , Membrana Celular/metabolismo , Membrana Celular/fisiologia , Separação Celular , Células Dendríticas/metabolismo , Regulação para Baixo/fisiologia , Citometria de Fluxo , Humanos , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/biossíntese
9.
EMBO J ; 24(13): 2331-41, 2005 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-15933714

RESUMO

Receptor-stimulated generation of intracellular reactive oxygen species (ROS) modulates signal transduction, although the mechanism(s) is unclear. One potential basis is the reversible oxidation of the active site cysteine of protein tyrosine phosphatases (PTPs). Here, we show that activation of the antigen receptor of T cells (TCR), which induces production of ROS, induces transient inactivation of the SH2 domain-containing PTP, SHP-2, but not the homologous SHP-1. SHP-2 is recruited to the LAT-Gads-SLP-76 complex and directly regulates the phosphorylation of key signaling proteins Vav1 and ADAP. Furthermore, the association of ADAP with the adapter SLP-76 is regulated by SHP-2 in a redox-dependent manner. The data indicate that TCR-mediated ROS generation leads to SHP-2 oxidation, which promotes T-cell adhesion through effects on an SLP-76-dependent signaling pathway to integrin activation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fosfoproteínas/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Receptores de Antígenos de Linfócitos T/fisiologia , Linfócitos T/fisiologia , Sítios de Ligação , Adesão Celular , Proteínas de Ciclo Celular/metabolismo , Cisteína/metabolismo , Humanos , Células Jurkat , Oxirredução , Fosforilação , Proteína Tirosina Fosfatase não Receptora Tipo 11 , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-vav , Espécies Reativas de Oxigênio/metabolismo , Receptores de Antígenos de Linfócitos T/agonistas , Proteínas Tirosina Fosfatases Contendo o Domínio SH2 , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA