RESUMO
Crude oil pollution is a global environmental concern since it persists in the environment longer than most conventional carbon sources. In December 2014, the hyper-arid Evrona Nature Reserve, Israel, experienced large-scale contamination when crude oil spilled. The overarching goal of the study was to investigate the possible changes, caused by an accidental crude oil spill, in the leaf reflectance and biochemical composition of four natural habitat desert shrubs. The specific objectives were (1) to monitor the biochemical properties of dominant shrub species in the polluted and control areas; (2) to study the long-term consequences of the contamination; (3) to provide information that will assist in planning rehabilitation actions; and (4) to explore the feasibility of vegetation indices (VIs), along with the machine learning (ML) technique, for detecting stressed shrubs based on the full spectral range. Four measurement campaigns were conducted in 2018 and 2019. Along with the various stress indicators, field spectral measurements were performed in the range of 350-2500 nm. A regression analysis to examine the relation of leaf reflectance to biochemical contents was carried out, to reveal the relevant wavelengths in which polluted and control plants differ. Vegetation indices applied in previous studies were found to be less sensitive for indirect detection of long-term oil contamination. A novel spectral index, based on indicative spectral bands, named the "normalized blue-green stress index" (NBGSI), was established. The NBGSI distinguished significantly between shrubs located in the polluted and in the control areas. The NBGSI showed a strong linear correlation with pheophytin a. Machine learning classification algorithms obtained high overall prediction accuracy in distinguishing between shrubs located in the oil-polluted and the control sites, indicating internal component differences. The findings of this study demonstrate the efficacy of indirect and non-destructive spectral tools for detecting and monitoring oil pollution stress in shrubs.
Assuntos
Poluição por Petróleo , Petróleo , Carbono , Ecossistema , Poluição por Petróleo/análise , PlantasRESUMO
Expanding the palette of fluorescent dyes is vital to push the frontier of biological imaging. Although rhodamine dyes remain the premier type of small-molecule fluorophore owing to their bioavailability and brightness, variants excited with far-red or near-infrared light suffer from poor performance due to their propensity to adopt a lipophilic, nonfluorescent form. We report a framework for rationalizing rhodamine behavior in biological environments and a general chemical modification for rhodamines that optimizes long-wavelength variants and enables facile functionalization with different chemical groups. This strategy yields red-shifted 'Janelia Fluor' (JF) dyes useful for biological imaging experiments in cells and in vivo.