Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 8(17): 4295-4299, 2017 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-28820945

RESUMO

We present full in situ structural solutions of carbon dioxide hydrate-II and hydrogen hydrate C0 at elevated pressures using neutron and X-ray diffraction. We find both hydrates adopt a common water network structure. The structure exhibits several features not previously found in hydrates; most notably it is chiral and has large open spiral channels along which the guest molecules are free to move. It has a network that is unrelated to any experimentally known ice, silica, or zeolite network but is instead related to two Zintl compounds. Both hydrates are found to be stable in electronic structure calculations, with hydration ratios in very good agreement with experiment.

2.
J Phys Chem B ; 113(49): 15975-88, 2009 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-19904911

RESUMO

Gas hydrates can exhibit an anomalously slow decomposition outside their thermodynamic stability field; the phenomenon is called "self-preservation" and is mostly studied at ambient pressure and at temperatures between approximately 240 K and the melting point of ice. Here, we present a combination of in situ neutron diffraction studies, pVT work, and ex situ scanning electron microscopy (SEM) on CO(2) clathrates covering a much broader p-T field, stretching from 200 to 270 K and pressures between the hydrate stability limit and 0.6 kPa (6 mbar), a pressure far outside stability. The self-preservation regime above 240 K is confirmed over a broad pressure range and appears to be caused by the annealing of an ice cover formed in the initial hydrate decomposition. Another, previously unknown regime of the self-preservation exists below this temperature, extending however only over a rather narrow pressure range. In this case, the initial ice microstructure is dominated by a fast two-dimensional growth covering rapidly the clathrate surface. All observations lend strong support to the idea that the phenomenon of self-preservation is linked to the permeability of the ice cover governed by (1) the initial microstructure of ice and/or (2) the subsequent annealing of this ice coating. The interplay of the microstructure of newly formed ice and its annealing with the ongoing decomposition reaction leads to various decomposition paths and under certain conditions to a very pronounced preservation anomaly.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA