RESUMO
Circulating cell-free nucleic acids are considered a promising source of biomarkers for diseases and cancer. Liquid biopsy biomarkers for brain tumours represent a major, still unmet, clinical need. In plasma, nucleic acids can be free or be associated with extracellular vesicles (EVs). Here we report an easy and reproducible method to analyse cell-free nucleic acids in plasma and EVs by conventional flow cytometry easy to translate into the clinics. Nucleic acids associated with the EVs or present in plasma samples are stained by Pyronin Y, which is a fluorescent dye that is preferably binding double-stranded nucleic acids. Fluorescent staining of EVs isolated from cell-conditioned media is suitable for DNA and RNA detection by flow cytometry. The nucleic acids are partially protected from degradation by the EVs' membrane. Additionally, DNA and RNA can be stained in plasma samples and plasma-derived EVs. Remarkably, analysis of plasma from patients and healthy individuals reveals a difference in their nucleic acid profiles. Taken together, our results indicate that the proposed methodology, which is based on conventional direct flow cytometry, is a promising easy tool for plasma nucleic acid analysis.
RESUMO
Among all cancers, colorectal cancer (CRC) is the 3rd most common and the 2nd leading cause of death worldwide. New therapeutic strategies are required to target cancer stem cells (CSCs), a subset of tumor cells highly resistant to present-day therapy and responsible for tumor relapse. CSCs display dynamic genetic and epigenetic alterations that allow quick adaptations to perturbations. Lysine-specific histone demethylase 1A (KDM1A also known as LSD1), a FAD-dependent H3K4me1/2 and H3K9me1/2 demethylase, was found to be upregulated in several tumors and associated with a poor prognosis due to its ability to maintain CSCs staminal features. Here, we explored the potential role of KDM1A targeting in CRC by characterizing the effect of KDM1A silencing in differentiated and CRC stem cells (CRC-SCs). In CRC samples, KDM1A overexpression was associated with a worse prognosis, confirming its role as an independent negative prognostic factor of CRC. Consistently, biological assays such as methylcellulose colony formation, invasion, and migration assays demonstrated a significantly decreased self-renewal potential, as well as migration and invasion potential upon KDM1A silencing. Our untargeted multi-omics approach (transcriptomic and proteomic) revealed the association of KDM1A silencing with CRC-SCs cytoskeletal and metabolism remodeling towards a differentiated phenotype, supporting the role of KDM1A in CRC cells stemness maintenance. Also, KDM1A silencing resulted in up-regulation of miR-506-3p, previously reported to play a tumor-suppressive role in CRC. Lastly, loss of KDM1A markedly reduced 53BP1 DNA repair foci, implying the involvement of KDM1A in the DNA damage response. Overall, our results indicate that KDM1A impacts CRC progression in several non-overlapping ways, and therefore it represents a promising epigenetic target to prevent tumor relapse.
RESUMO
Enhanced fatty acid synthesis is a hallmark of tumors, including glioblastoma. SREBF1/2 regulate the expression of enzymes involved in fatty acid and cholesterol synthesis. Yet, little is known about the precise mechanism regulating SREBP gene expression in glioblastoma. Here, we show that a novel interaction between the co-activator/co-repressor CTBP and the tumor suppressor ZBTB18 regulates the expression of SREBP genes. In line with our findings, metabolic assays and glucose tracing analysis confirm the reduction in several phospholipid species upon ZBTB18 expression. Our study identifies CTBP1/2 and LSD1 as co-activators of SREBP genes and indicates that the functional activity of the CTBP-LSD1 complex is altered by ZBTB18. ZBTB18 binding to the SREBP gene promoters is associated with reduced LSD1 demethylase activity of H3K4me2 and H3K9me2 marks. Concomitantly, the interaction between LSD1, CTBP, and ZNF217 is increased, suggesting that ZBTB18 promotes LSD1 scaffolding function. Our results outline a new epigenetic mechanism enrolled by ZBTB18 and its co-factors to regulate fatty acid synthesis that could be targeted to treat glioblastoma patients.
Assuntos
Glioblastoma , Humanos , Ácidos Graxos , Glioblastoma/genética , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Lipídeos , Proteína de Ligação a Elemento Regulador de Esterol 1/genéticaRESUMO
Glioblastoma (GBM) represents the most aggressive and lethal disease of the central nervous system. Diagnosis is delayed following the occurrence of symptoms, and treatment is based on standardized approaches that are unable to cope with its heterogeneity, mutability, and invasiveness. The follow-up of patients relies on burdensome schedules for magnetic resonance imaging (MRI). However, to personalize treatment, biomarkers and liquid biopsy still represent unmet clinical needs. Extracellular vesicles (EVs) may be the key to revolutionize the entire process of care for patients with GBM. EVs can be collected noninvasively (eg, blood) and impressively possess multilayered information, which is constituted by their concentration and molecular cargo. EV-based liquid biopsy may facilitate GBM diagnosis and enable the implementation of personalized treatment, resulting in customized care for each patient and for each analyzed time point of the disease, thereby tackling the distinctive heterogeneity and mutability of GBM that confounds effective treatment. Herein, we discuss the limitations of current GBM treatment options and the rationale behind the need for personalized care. We also review the evidence supporting GBM-associated EVs as a promising tool capable of fulfilling the still unmet clinical need for effective and timely personalized care of patients with GBM.
Assuntos
Neoplasias Encefálicas , Vesículas Extracelulares , Glioblastoma , Biomarcadores , Neoplasias Encefálicas/patologia , Vesículas Extracelulares/patologia , Glioblastoma/patologia , Humanos , Biópsia Líquida , Medicina de PrecisãoRESUMO
Glioblastoma (GBM) is a fatal tumor whose aggressiveness, heterogeneity, poor blood-brain barrier penetration, and resistance to therapy highlight the need for new targets and clinical treatments. A step toward clinical translation includes the eradication of GBM tumor-initiating cells (TICs), responsible for GBM heterogeneity and relapse. By using patient-derived TICs and xenograft orthotopic models, we demonstrated that the selective lysine-specific histone demethylase 1 inhibitor DDP_38003 (LSD1i) is able to penetrate the brain parenchyma in vivo in preclinical models, is well tolerated, and exerts antitumor activity in molecularly different GBMs. LSD1 genetic targeting further strengthens the role of LSD1 in GBM TIC maintenance. GBM TIC plasticity supports their adaptation and survival under a plethora of environmental stresses, including nutrient deficiency and proteostasis perturbation. By mimicking these stresses in vitro, we found that LSD1 inhibition hampers the induction of the activating transcription factor 4 (ATF4), the master regulator of the integrated stress response (ISR). The resulting aberrant ISR sensitizes GBM TICs to stress-induced cell death, hampering tumor aggressiveness. Functionally, LSD1i interferes with LSD1 scaffolding function and prevents its interaction with CREBBP, a critical ATF4 activator. By disrupting the interaction between CREBBP and LSD1-ATF4 axis, LSD1 inhibition prevents GBM TICs from overcoming stress and sustaining GBM progression. The effectiveness of the LSD1 inhibition in preclinical models shown here places a strong rationale toward its clinical translation for GBM treatment.
Assuntos
Neoplasias Encefálicas , Glioblastoma , Fator 4 Ativador da Transcrição/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Histona Desmetilases/metabolismo , Humanos , Recidiva Local de Neoplasia/metabolismo , Células-Tronco Neoplásicas/patologiaRESUMO
PURPOSE: Glioblastoma (GBM) is the most common primary brain tumor. The identification of blood biomarkers reflecting the tumor status represents a major unmet need for optimal clinical management of patients with GBM. Their high number in body fluids, their stability, and the presence of many tumor-associated proteins and RNAs make extracellular vesicles potentially optimal biomarkers. Here, we investigated the potential role of plasma extracellular vesicles from patients with GBM for diagnosis and follow-up after treatment and as a prognostic tool. EXPERIMENTAL DESIGN: Plasma from healthy controls (n = 33), patients with GBM (n = 43), and patients with different central nervous system malignancies (n = 25) were collected. Extracellular vesicles were isolated by ultracentrifugation and characterized in terms of morphology by transmission electron microscopy, concentration, and size by nanoparticle tracking analysis, and protein composition by mass spectrometry. An orthotopic mouse model of human GBM confirmed human plasma extracellular vesicle quantifications. Associations between plasma extracellular vesicle concentration and clinicopathologic features of patients with GBM were analyzed. All statistical tests were two-sided. RESULTS: GBM releases heterogeneous extracellular vesicles detectable in plasma. Plasma extracellular vesicle concentration was higher in GBM compared with healthy controls (P < 0.001), brain metastases (P < 0.001), and extra-axial brain tumors (P < 0.001). After surgery, a significant drop in plasma extracellular vesicle concentration was measured (P < 0.001). Plasma extracellular vesicle concentration was also increased in GBM-bearing mice (P < 0.001). Proteomic profiling revealed a GBM-distinctive signature. CONCLUSIONS: Higher extracellular vesicle plasma levels may assist in GBM clinical diagnosis: their reduction after GBM resection, their rise at recurrence, and their protein cargo might provide indications about tumor, therapy response, and monitoring.