Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Neurodev Disord ; 16(1): 27, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783199

RESUMO

BACKGROUND: Tuberous sclerosis complex (TSC) is a multi-system genetic disease that causes benign tumors in the brain and other vital organs. The most debilitating symptoms result from involvement of the central nervous system and lead to a multitude of severe symptoms including seizures, intellectual disability, autism, and behavioral problems. TSC is caused by heterozygous mutations of either the TSC1 or TSC2 gene and dysregulation of mTOR kinase with its multifaceted downstream signaling alterations is central to disease pathogenesis. Although the neurological sequelae of the disease are well established, little is known about how these mutations might affect cellular components and the function of the blood-brain barrier (BBB). METHODS: We generated TSC disease-specific cell models of the BBB by leveraging human induced pluripotent stem cell and microfluidic cell culture technologies. RESULTS: Using microphysiological systems, we demonstrate that a BBB generated from TSC2 heterozygous mutant cells shows increased permeability. This can be rescued by wild type astrocytes or by treatment with rapamycin, an mTOR kinase inhibitor. CONCLUSION: Our results demonstrate the utility of microphysiological systems to study human neurological disorders and advance our knowledge of cell lineages contributing to TSC pathogenesis and informs future therapeutics.


Assuntos
Barreira Hematoencefálica , Células-Tronco Pluripotentes Induzidas , Proteína 2 do Complexo Esclerose Tuberosa , Esclerose Tuberosa , Esclerose Tuberosa/fisiopatologia , Esclerose Tuberosa/genética , Humanos , Barreira Hematoencefálica/fisiopatologia , Proteína 2 do Complexo Esclerose Tuberosa/genética , Sirolimo/farmacologia , Astrócitos/metabolismo
2.
bioRxiv ; 2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38168450

RESUMO

Tuberous sclerosis complex (TSC) is a multi-system genetic disease that causes benign tumors in the brain and other vital organs. The most debilitating symptoms result from involvement of the central nervous system and lead to a multitude of severe symptoms including seizures, intellectual disability, autism, and behavioral problems. TSC is caused by heterozygous mutations of either the TSC1 or TSC2 gene. Dysregulation of mTOR kinase with its multifaceted downstream signaling alterations is central to disease pathogenesis. Although the neurological sequelae of the disease are well established, little is known about how these mutations might affect cellular components and the function of the blood-brain barrier (BBB). We generated disease-specific cell models of the BBB by leveraging human induced pluripotent stem cell and microfluidic cell culture technologies. Using these microphysiological systems, we demonstrate that the BBB generated from TSC2 heterozygous mutant cells shows increased permeability which can be rescued by wild type astrocytes and with treatment with rapamycin, an mTOR kinase inhibitor. Our results further demonstrate the utility of microphysiological systems to study human neurological disorders and advance our knowledge of the cell lineages contributing to TSC pathogenesis.

3.
Lab Chip ; 9(18): 2659-64, 2009 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-19704981

RESUMO

Stem cells hold great promise as a means of treating otherwise incurable, degenerative diseases due to their ability both to self-renew and differentiate. However, stem cell damage can also play a role in the disease with the formation of solid tumors and leukaemias such as chronic myeloid leukaemia (CML), a hematopoietic stem cell (HSC) disorder. Despite recent medical advances, CML remains incurable by drug therapy. Understanding the mechanisms which govern chemoresistance of individual stem cell leukaemias may therefore require analysis at the single cell level. This task is not trivial using current technologies given that isolating HSCs is difficult, expensive, and inefficient due to low cell yield from patients. In addition, hematopoietic cells are largely non-adherent and thus difficult to study over time using conventional cell culture techniques. Hence, there is a need for new microfluidic platforms that allow the functional interrogation of hundreds of non-adherent single cells in parallel. We demonstrate the ability to perform assays, normally performed on the macroscopic scale, within the microfluidic platform using minimal reagents and low numbers of primary cells. We investigated normal and CML stem cell responses to the tyrosine kinase inhibitor, dasatinib, a drug approved for the treatment of CML. Dynamic, on-chip three-color cell viability assays revealed that differences in the responses of normal and CML stem/progenitor cells to dasatinib were observed even in the early phases of exposure, during which time normal cells exhibit a significantly elevated cell death rate, as compared to both controls and CML cells. Further studies show that dasatinib does, however, markedly reduce CML stem/progenitor cell migration in situ.


Assuntos
Células-Tronco Hematopoéticas/fisiologia , Microfluídica/métodos , Anexina A5/metabolismo , Apoptose/fisiologia , Divisão Celular/fisiologia , Sobrevivência Celular , Células Cultivadas , Dasatinibe , Humanos , Cinética , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Microscopia de Fluorescência , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Tirosina Quinases/antagonistas & inibidores , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Transdução de Sinais/fisiologia , Tiazóis/farmacologia , Tiazóis/uso terapêutico
4.
Mol Imaging ; 6(5): 331-9, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18092518

RESUMO

Vascular endothelial growth factor (VEGF) is a major inducer of angiogenesis. We generated a transgenic reporter mouse, VEGF-GL, in which an enhanced green fluorescent protein-luciferase fusion protein is expressed under the control of a human VEGF-A promoter. The VEGF-GL mouse exhibited intense bioluminescence throughout the body at 1 week of age. The signals rapidly declined to a relatively low level as the mice grew. The adult VEGF-GL mouse showed restricted bioluminescence to the areas undergoing wound healing. In contrast, the VEGF-GL mice, which were crossed with mouse mammary tumor virus-polyoma virus middle T antigen transgenic mammary tumor mice, exhibited prominent bioluminescence in the tumors, correlating with VEGF transcription. Tumor bioluminescence was observed in the bigenic mice as early as 8 weeks, before tumors were palpable, and the signals increased with tumor growth. In conclusion, the VEGF-GL mouse permits longitudinal and quantitative assessment of VEGF promoter activity in vivo. The model should facilitate understanding of the molecular controls and pathways that regulate VEGF transcription in vivo.


Assuntos
Medições Luminescentes/métodos , Neoplasias Mamárias Animais/patologia , Regiões Promotoras Genéticas/genética , Fator A de Crescimento do Endotélio Vascular/genética , Animais , Western Blotting , Feminino , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Imunoprecipitação , Hibridização In Situ , Luciferases/genética , Luciferases/metabolismo , Masculino , Neoplasias Mamárias Animais/genética , Neoplasias Mamárias Animais/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA