Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Curr Environ Health Rep ; 6(3): 80-94, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31134516

RESUMO

PURPOSE: Fatty liver disease (FLD) affects over 25% of the global population and may lead to liver-related mortality due to cirrhosis and liver cancer. FLD caused by occupational and environmental chemical exposures is termed "toxicant-associated steatohepatitis" (TASH). The current review addresses the scientific progress made in the mechanistic understanding of TASH since its initial description in 2010. RECENT FINDINGS: Recently discovered modes of actions for volatile organic compounds and persistent organic pollutants include the following: (i) the endocrine-, metabolism-, and signaling-disrupting chemical hypotheses; (ii) chemical-nutrient interactions and the "two-hit" hypothesis. These key hypotheses were then reviewed in the context of the steatosis adverse outcome pathway (AOP) proposed by the US Environmental Protection Agency. The conceptual understanding of the contribution of environmental exposures to FLD has progressed significantly. However, because this is a new research area, more studies including mechanistic human data are required to address current knowledge gaps.


Assuntos
Carcinógenos/toxicidade , Disruptores Endócrinos/efeitos adversos , Exposição Ambiental/efeitos adversos , Poluentes Ambientais/toxicidade , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Humanos , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Praguicidas/toxicidade , Fatores de Risco
2.
Xenobiotica ; 49(12): 1414-1422, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30991879

RESUMO

1. Aryl hydrocarbon receptor (AhR) ligands, including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and polychlorinated biphenyls (PCBs), are endocrine disrupting chemicals associated with nonalcoholic fatty liver disease. This study documents the species-specific differences between mouse (high affinity mAhR) and human AhR (hAhR) activation by PCB congeners and Aroclor mixtures. 2. AhR activation by TCDD or PCBs 77, 81, 114, 114, 126, and 169 was measured using luciferase reporter constructs transfected into either Hepa1c1c7 mouse or HepG2 human liver cell lines. The EC50 values were lower in Hepa1c1c7 cells than HepG2 cells for all compounds tested except PCB 81. The results for TCDD and PCB 126 were validated in primary human and mouse hepatocytes by measuring CYP1A1 gene transcript levels. 3. Because humans are exposed to PCB mixtures, several mixtures (Aroclors 1254; 1260; and 1260 + 0.1% PCB126 each at 10 µg/ml) were then tested. Neither Aroclor 1254 nor Aroclor 1260 increased luciferase activity by the transfected AhR reporter construct. The Aroclor 1260 + 0.1% PCB 126 mixture induced mAhR-mediated transactivation, but not hAhR activation in cell lines. 4. In summary, significant concentration-dependent differences exist between human and mouse AhR activation by PCBs. Relative effect potencies differed, in some cases, from published toxic equivalency factors.


Assuntos
Arocloros/farmacocinética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Bifenilos Policlorados/farmacocinética , Receptores de Hidrocarboneto Arílico/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Células Cultivadas , Família 1 do Citocromo P450/genética , Relação Dose-Resposta a Droga , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Masculino , Camundongos Endogâmicos C57BL , Bifenilos Policlorados/administração & dosagem , Receptores de Hidrocarboneto Arílico/genética , Especificidade da Espécie
3.
Toxicol Sci ; 162(2): 622-634, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29329451

RESUMO

The purpose of this study is to identify an environmentally relevant shared receptor target for endocrine and metabolism disrupting chemical pollutants. A feature of the tested chemicals was that they induced Cyp2b10 in vivo implicating activation of the constitutive androstane receptor (CAR). Recent studies suggest that these compounds could be indirect CAR activators via epidermal growth factor receptor (EGFR) inhibition. Assays included a CAR activity reporter assay, EGF endocytosis assay, and EGFR phosphorylation assay. Docking simulations were used to identify putative binding sites for environmental chemicals on the EGFR. Whole-weight and lipid-adjusted serum mean pollutant exposures were determined using data from the National Health and Examination Survey (NHANES) and compared with the IC50 values determined in vitro. Chlordane, trans-nonachlor, PCB-126, PCB-153, and atrazine were the most potent EGFR inhibitors tested. PCB-126, PCB-153, and trans-nonachlor appeared to be competitive EGFR antagonists as they displaced bound EGF from EGFR. However, atrazine acted through a different mechanism and could be an EGFR tyrosine kinase inhibitor. EGFR inhibition relative effect potencies were determined for these compounds. In NHANES, serum concentrations of trans-nonachlor, PCB-126, and PCB-153 greatly exceeded their calculated IC50 values. A common mechanism of action through EGFR inhibition for three diverse classes of metabolic disrupting chemicals was characterized by measuring inhibition of EGFR phosphorylation and EGF-EGFR endocytosis. Based on NHANES data, EGFR inhibition may be an environmentally relevant mode of action for some PCBs, pesticides, and herbicides.


Assuntos
Disruptores Endócrinos/toxicidade , Receptores ErbB/metabolismo , Redes e Vias Metabólicas/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Receptor Constitutivo de Androstano , Endocitose/efeitos dos fármacos , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/agonistas , Células Hep G2 , Humanos , Camundongos , Simulação de Acoplamento Molecular , Fosforilação , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Transfecção
4.
Xenobiotica ; 47(9): 807-820, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27458090

RESUMO

1. Polychlorinated biphenyls (PCBs) are persistent environmental pollutants that disrupt hepatic xenobiotic and intermediary metabolism, leading to metabolic syndrome and nonalcoholic steatohepatitis (NASH). 2. Since phenobarbital indirectly activates Constitutive Androstane Receptor (CAR) by antagonizing growth factor binding to the epidermal growth factor receptor (EGFR), we hypothesized that PCBs may also diminish EGFR signaling. 3. The effects of the PCB mixture Aroclor 1260 on the protein phosphorylation cascade triggered by EGFR activation were determined in murine (in vitro and in vivo) and human models (in vitro). EGFR tyrosine residue phosphorylation was decreased by PCBs in all models tested. 4. The IC50 values for Aroclor 1260 concentrations that decreased Y1173 phosphorylation of EGFR were similar in murine AML-12 and human HepG2 cells (∼2-4 µg/mL). Both dioxin and non-dioxin-like PCB congeners decreased EGFR phosphorylation in cell culture. 5. PCB treatment reduced phosphorylation of downstream EGFR effectors including Akt and mTOR, as well as other phosphoprotein targets including STAT3 and c-RAF in vivo. 6. PCBs diminish EGFR signaling in human and murine hepatocyte models and may dysregulate critical phosphoprotein regulators of energy metabolism and nutrition, providing a new mechanism of action in environmental diseases.


Assuntos
Poluentes Ambientais/toxicidade , Receptores ErbB/metabolismo , Bifenilos Policlorados/toxicidade , Transdução de Sinais/efeitos dos fármacos , Animais , Camundongos , Xenobióticos/toxicidade
5.
Toxicol Appl Pharmacol ; 313: 47-56, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27765658

RESUMO

BACKGROUND: Occupational vinyl chloride (VC) exposures have been associated with toxicant-associated steatohepatitis and liver cancer. Metabolomics has been used to clarify mode of action in drug-induced liver injury but has not been performed following VC exposures. METHODS: Plasma samples from 17 highly exposed VC workers without liver cancer and 27 unexposed healthy volunteers were obtained for metabolite extraction and GC/MS and LC/MS2 analysis. Following ion identification/quantification, Ingenuity pathway analysis was performed. RESULTS: 613 unique named metabolites were identified. Of these, 189 metabolites were increased in the VC exposure group while 94 metabolites were decreased. Random Forest analysis indicated that the metabolite signature could separate the groups with 94% accuracy. VC exposures were associated with increased long chain (including arachidonic acid) and essential (including linoleic acid) fatty acids. Occupational exposure increased lipid peroxidation products including monohydroxy fatty acids (including 13-HODE); fatty acid dicarboxylates; and oxidized arachidonic acid products (including 5,9, and 15-HETE). Carnitine and carnitine esters were decreased, suggesting peroxisomal/mitochondrial dysfunction and alternate modes of lipid oxidation. Differentially regulated metabolites were shown to interact with extracellular-signal-regulated kinase 1/2 (ERK1/2), Akt, AMP-activated protein kinase (AMPK), and the N-Methyl-d-aspartate (NMDA) receptor. The top canonical pathways affected by occupational exposure included tRNA charging, nucleotide degradation, amino acid synthesis/degradation and urea cycle. Methionine and homocysteine was increased with decreased cysteine, suggesting altered 1-carbon metabolism. CONCLUSIONS: Occupational exposure generated a distinct plasma metabolome with markedly altered lipid and amino acid metabolites. ERK1/2, Akt, AMPK, and NMDA were identified as protein targets for vinyl chloride toxicity.


Assuntos
Proteínas Sanguíneas/metabolismo , Metabolômica , Exposição Ocupacional , Cloreto de Polivinila/toxicidade , Adulto , Estudos de Casos e Controles , Humanos , Pessoa de Meia-Idade , Cloreto de Polivinila/síntese química
6.
Biochim Biophys Acta ; 1859(9): 1083-1099, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26962021

RESUMO

Nuclear receptors are transcription factors which sense changing environmental or hormonal signals and effect transcriptional changes to regulate core life functions including growth, development, and reproduction. To support this function, following ligand-activation by xenobiotics, members of subfamily 1 nuclear receptors (NR1s) may heterodimerize with the retinoid X receptor (RXR) to regulate transcription of genes involved in energy and xenobiotic metabolism and inflammation. Several of these receptors including the peroxisome proliferator-activated receptors (PPARs), the pregnane and xenobiotic receptor (PXR), the constitutive androstane receptor (CAR), the liver X receptor (LXR) and the farnesoid X receptor (FXR) are key regulators of the gut:liver:adipose axis and serve to coordinate metabolic responses across organ systems between the fed and fasting states. Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease and may progress to cirrhosis and even hepatocellular carcinoma. NAFLD is associated with inappropriate nuclear receptor function and perturbations along the gut:liver:adipose axis including obesity, increased intestinal permeability with systemic inflammation, abnormal hepatic lipid metabolism, and insulin resistance. Environmental chemicals may compound the problem by directly interacting with nuclear receptors leading to metabolic confusion and the inability to differentiate fed from fasting conditions. This review focuses on the impact of nuclear receptors in the pathogenesis and treatment of NAFLD. Clinical trials including PIVENS and FLINT demonstrate that nuclear receptor targeted therapies may lead to the paradoxical dissociation of steatosis, inflammation, fibrosis, insulin resistance, dyslipidemia and obesity. Novel strategies currently under development (including tissue-specific ligands and dual receptor agonists) may be required to separate the beneficial effects of nuclear receptor activation from unwanted metabolic side effects. The impact of nuclear receptor crosstalk in NAFLD is likely to be profound, but requires further elucidation. This article is part of a Special Issue entitled: Xenobiotic nuclear receptors: New Tricks for An Old Dog, edited by Dr. Wen Xie.


Assuntos
Receptores X do Fígado/genética , Hepatopatia Gordurosa não Alcoólica/genética , Receptores Ativados por Proliferador de Peroxissomo/genética , Receptores Citoplasmáticos e Nucleares/genética , Receptores de Esteroides/genética , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Animais , Receptor Constitutivo de Androstano , Drogas em Investigação/administração & dosagem , Drogas em Investigação/efeitos adversos , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/genética , Regulação da Expressão Gênica , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Receptores X do Fígado/agonistas , Receptores X do Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Receptores Ativados por Proliferador de Peroxissomo/agonistas , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Receptor de Pregnano X , Receptor Cross-Talk/efeitos dos fármacos , Receptores Citoplasmáticos e Nucleares/agonistas , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores de Esteroides/agonistas , Receptores de Esteroides/metabolismo , Transdução de Sinais , Xenobióticos/administração & dosagem , Xenobióticos/metabolismo
7.
Adv Pharmacol ; 74: 1-33, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26233902

RESUMO

The purpose of this chapter is to provide insight into which human cytochromes P450 (CYPs) may be involved in metabolism of chemical carcinogens and anticancer drugs. A historical overview of this field and the development of literature using relevant animal models and expressed human CYPs have provided information about which specific CYPs may be involved in carcinogen metabolism. Definition of the biochemical properties of CYP activity came from several groups who studied the reaction stoichiometry of butter yellow and benzo[α]pyrene, including their role in induction of these enzyme systems. This chapter will list as much as is known about the human CYPs involved in carcinogen and anticancer drug metabolism, as well as summarize studies with rodent CYPs. A review of three major classes of anticancer drugs and their metabolism in humans is covered for cyclophosphamide, procarbazine, and anthracycline antibiotics, cancer chemotherapeutic compounds extensively metabolized by CYPs. The emerging information about human CYP gene polymorphisms as well as other enzymes involved in foreign compound metabolism provides considerable information about how these genetic variants affect carcinogen and anticancer drug metabolism. With information available from individual's genomic sequences, consideration of populations who may be at risk due to environmental exposure to carcinogens or how to optimize their cancer therapy regimens to enhance efficacy of the anticancer drugs appears to be an important field of study to benefit individuals in the future.


Assuntos
Antineoplásicos/metabolismo , Carcinógenos/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Animais , Humanos , Polimorfismo Genético/genética
8.
Toxicol Sci ; 140(2): 283-97, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24812009

RESUMO

Polychlorinated biphenyls (PCBs) are persistent environmental toxicants, present in 100% of U.S. adults and dose-dependently associated with obesity and non-alcoholic fatty liver disease (NAFLD). PCBs are predicted to interact with receptors previously implicated in xenobiotic/energy metabolism and NAFLD. These receptors include the aryl hydrocarbon receptor (AhR), pregnane xenobiotic receptor (PXR), constitutive androstane receptor (CAR), peroxisome proliferator-activated receptors (PPARs), liver-X-receptor (LXRα), and farnesoid-X-receptor (FXR). This study evaluates Aroclor 1260, a PCB mixture with congener composition mimicking that of human adipose tissue, and selected congeners, as potential ligands for these receptors utilizing human hepatoma-derived (HepG2) and primate-derived (COS-1) cell lines, and primary human hepatocytes. Aroclor 1260 (20 µg/ml) activated AhR, and PCB 126, a minor component, was a potent inducer. Aroclor 1260 activated PXR in a simple concentration-dependent manner at concentrations ≥10 µg/ml. Among the congeners tested, PCBs 138, 149, 151, 174, 183, 187, and 196 activated PXR. Aroclor 1260 activated CAR2 and CAR3 variants at lower concentrations and antagonize CAR2 activation by the CAR agonist, CITCO, at higher concentrations (≥20 µg/ml). Additionally, Aroclor 1260 induced CYP2B6 in primary hepatocytes. At subtoxic doses, Aroclor 1260 did not activate LXR or FXR and had no effect on LXR- or FXR-dependent induction by the agonists T0901317 or GW4064, respectively. Aroclor 1260 (20 µg/ml) suppressed PPARα activation by the agonist nafenopin, although none of the congeners tested demonstrated significant inhibition. The results suggest that Aroclor 1260 is a human AhR, PXR and CAR3 agonist, a mixed agonist/antagonist for CAR2, and an antagonist for human PPARα.


Assuntos
Arocloros/toxicidade , Sequência de Bases , Misturas Complexas , Primers do DNA , Células Hep G2 , Humanos
9.
J Nutr Biochem ; 24(9): 1587-95, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23618531

RESUMO

BACKGROUND: Polychlorinated biphenyls (PCBs) are persistent environmental pollutants that are detectable in the serum of all American adults. Amongst PCB congeners, PCB 153 has the highest serum level. PCBs have been dose-dependently associated with obesity, metabolic syndrome and nonalcoholic fatty liver disease (NAFLD) in epidemiological studies. OBJECTIVE: The purpose of this study is to determine mechanisms by which PCB 153 worsens diet-induced obesity and NAFLD in male mice fed a high-fat diet (HFD). METHODS: Male C57BL6/J mice were fed either control or 42% milk fat diet for 12 weeks with or without PCB 153 coexposure (50 mg/kg ip ×4). Glucose tolerance test was performed, and plasma and tissues were obtained at necropsy for measurements of adipocytokine levels, histology and gene expression. RESULTS: In control diet-fed mice, addition of PCB 153 had minimal effects on any of the measured parameters. However, PCB 153 treatment in high-fat-fed mice was associated with increased visceral adiposity, hepatic steatosis and plasma adipokines including adiponectin, leptin, resistin and plasminogen activator inhibitor-1 levels. Likewise, coexposure reduced expression of hepatic genes implicated in ß-oxidation while increasing the expression of genes associated with lipid biosynthesis. Regardless of diet, PCB 153 had no effect on insulin resistance or tumor necrosis factor alpha levels. CONCLUSION: PCB 153 is an obesogen that exacerbates hepatic steatosis, alters adipocytokines and disrupts normal hepatic lipid metabolism when administered with HFD but not control diet. Because all US adults have been exposed to PCB 153, this particular nutrient-toxicant interaction potentially impacts human obesity/NAFLD.


Assuntos
Fígado Gorduroso/sangue , Obesidade/sangue , Bifenilos Policlorados/toxicidade , Adiponectina/sangue , Animais , Dieta Hiperlipídica , Modelos Animais de Doenças , Poluentes Ambientais/administração & dosagem , Poluentes Ambientais/sangue , Poluentes Ambientais/toxicidade , Fígado Gorduroso/induzido quimicamente , Teste de Tolerância a Glucose , Resistência à Insulina , Leptina/sangue , Lipogênese , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica , Obesidade/induzido quimicamente , Inibidor 1 de Ativador de Plasminogênio/sangue , Bifenilos Policlorados/administração & dosagem , Bifenilos Policlorados/sangue , Resistina/sangue
10.
Alcohol ; 47(3): 257-64, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23453163

RESUMO

Alcohol and dietary fat both play an important role in alcohol-mediated multi-organ pathology, including gut and liver. In the present study we hypothesized that the combination of alcohol and dietary unsaturated fat (USF) would result in intestinal inflammatory stress and mucus layer alterations, thus contributing to disruption of intestinal barrier integrity. C57BL/6N mice were fed Lieber-DeCarli liquid diets containing EtOH and enriched in USF (corn oil/linoleic acid) or SF (medium chain triglycerides: beef tallow) for 8 weeks. Intestinal histology, morphometry, markers of inflammation, as well as levels of mucus protective factors were evaluated. Alcohol and dietary USF triggered an intestinal pro-inflammatory response, characterized by increase in Tnf-α, MCP1, and MPO activity. Further, alcohol and dietary USF, but not SF, resulted in alterations of the intestinal mucus layer, characterized by decreased expression of Muc2 in the ileum. A strong correlation was observed between down-regulation of the antimicrobial factor Cramp and increased Tnf-α mRNA. Therefore, dietary unsaturated fat (corn oil/LA enriched) is a significant contributing factor to EtOH-mediated intestinal inflammatory response and mucus layer alterations in rodents.


Assuntos
Óleo de Milho/toxicidade , Enterite/patologia , Etanol/toxicidade , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Ácido Linoleico/toxicidade , Animais , Óleo de Milho/administração & dosagem , Gorduras Insaturadas na Dieta/administração & dosagem , Gorduras Insaturadas na Dieta/toxicidade , Enterite/induzido quimicamente , Etanol/administração & dosagem , Ácido Linoleico/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL
11.
Toxicol Pathol ; 41(2): 343-60, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23262638

RESUMO

Hepatotoxicity is the most common organ injury due to occupational and environmental exposures to industrial chemicals. A wide range of liver pathologies ranging from necrosis to cancer have been observed following chemical exposures both in humans and in animal models. Toxicant-associated fatty liver disease (TAFLD) is a recently named form of liver injury pathologically similar to alcoholic liver disease (ALD) and nonalcoholic fatty liver disease (NAFLD). Toxicant-associated steatohepatitis (TASH) is a more severe form of TAFLD characterized by hepatic steatosis, inflammatory infiltrate, and in some cases, fibrosis. While subjects with TASH have exposures to industrial chemicals, such as vinyl chloride, they do not have traditional risk factors for fatty liver such as significant alcohol consumption or obesity. Conventional biomarkers of hepatotoxicity including serum alanine aminotransferase activity may be normal in TASH, making screening problematic. This article examines selected chemical exposures associated with TAFLD in human subjects or animal models and concisely reviews the closely related NAFLD and ALD.


Assuntos
Fígado Gorduroso/induzido quimicamente , Doenças Profissionais/induzido quimicamente , Animais , Biomarcadores , Histocitoquímica , Humanos , Exposição Ocupacional/efeitos adversos , Fatores de Risco , Cloreto de Vinil/intoxicação , Cloreto de Vinil/toxicidade
12.
Chem Biol Interact ; 191(1-3): 278-87, 2011 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-21256123

RESUMO

Reactive lipid aldehydes are implicated in the pathogenesis of various oxidative stress-mediated diseases, including non-alcoholic steatohepatitis, atherosclerosis, Alzheimer's and cataract. In the present study, we sought to define which hepatic Aldh isoform plays a major role in detoxification of lipid-derived aldehydes, such as acrolein and HNE by enzyme kinetic and gene expression studies. The catalytic efficiencies for metabolism of acrolein by Aldh1a1 was comparable to that of Aldh3a1 (V(max)/K(m)=23). However, Aldh1a1 exhibits far higher affinity for acrolein (K(m)=23.2 µM) compared to Aldh3a1 (K(m)=464 µM). Aldh1a1 displays a 3-fold higher catalytic efficiency for HNE than Aldh3a1 (218 ml/min/mg vs 69 ml/min/mg). The endogenous Aldh1a1 gene was highly expressed in mouse liver and a liver-derived cell line (Hepa-1c1c7) compared to Aldh2, Aldh1b1 and Aldh3a1. Aldh1a1 mRNA levels was 34-fold and 73-fold higher than Aldh2 in mouse liver and Hepa-1c1c7 cells respectively. Aldh3a1 gene was absent in mouse liver, but moderately expressed in Hepa-1c1c7 cells compared to Aldh1a1. We demonstrated that knockdown of Aldh1a1 expression by siRNA caused Hepa-1c1c7 cells to be more sensitive to acrolein-induced cell death and resulted in increased accumulation of acrolein-protein adducts and caspase 3 activation. These results indicate that Aldh1a1 plays a major role in cellular defense against oxidative damage induced by reactive lipid aldehydes in mouse liver. We also noted that hepatic Aldh1a1 mRNA levels were significantly increased (≈3-fold) in acrolein-fed mice compared to control. In addition, hepatic cytosolic ALDH activity was induced by acrolein when 1mM NAD(+) was used as cofactor, suggesting an Aldh1a1-protective mechanism against acrolein toxicity in mice liver. Thus, mechanisms to induce Aldh1a1 gene expression may provide a useful rationale for therapeutic protection against oxidative stress-induced pathologies.


Assuntos
Aldeído Desidrogenase/metabolismo , Aldeídos/metabolismo , Peroxidação de Lipídeos , Fígado/enzimologia , Acroleína/farmacologia , Aldeído Desidrogenase/deficiência , Aldeído Desidrogenase/genética , Família Aldeído Desidrogenase 1 , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Caspase 3/metabolismo , Linhagem Celular Tumoral , Citosol/efeitos dos fármacos , Citosol/metabolismo , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/genética , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Cinética , Peroxidação de Lipídeos/efeitos dos fármacos , Peroxidação de Lipídeos/genética , Camundongos , Retinal Desidrogenase , Especificidade por Substrato
13.
Arch Biochem Biophys ; 431(2): 161-8, 2004 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-15488464

RESUMO

Ebselen is an organoselenium compound that acts as a glutathione peroxidase mimic. Since ebselen is a hydrophobic, thio-reactive compound capable of interacting with Keap-1, we tested its ability to activate nrf-2-dependent responses in the human hepatocarcinoma derived cell line, HepG2. Ebselen (25 microM) increased expression of an nrf-2 response element reporter in transient transfection experiments by 4-fold. Although, the induction was lower than that observed with classic nrf-2 inducer, sulforaphane (10 microL; 7-fold), ebselen also induced expression of native NAD(P)H:quinone oxidoreductase (1.6-fold) activity; induction of this protein is known to be dependent on nrf-2 action. Treatment of HepG2 cells with ebselen increased glutathione levels after 12 (1.5-fold) or 24 (1.9-fold)h of treatment. Treatment of the cells with either sulforaphane or ebselen 24 h prior to treatment with varying concentrations of t-butyl hydroperoxide increased the half maximal lethal dose from 28 to 42 microM and 58 microM for sulforaphane and ebselen, respectively. The protective effects of ebselen treatment were greater with pretreatment (IC50=58 microM) than simultaneous addition (IC50=45 microM). The protein synthesis inhibitor cycloheximide blocked increases in intracellular glutathione synthesis and partially blocked the protective effects of this regimen on increasing cell survival following t-butyl hydroperoxide treatment. Likewise co-treatment with the MEK 1 inhibitor, PD98059, which has been shown to inhibit nrf-2-dependent gene activation, partially inhibited the ebselen-dependent increases in IC50 while not affecting the control cells. We conclude that nrf-2 activation augments the role of ebselen as an antioxidant or by indirect induction of cellular antioxidant defences.


Assuntos
Antioxidantes/farmacologia , Azóis/farmacologia , Proteínas de Ligação a DNA/efeitos dos fármacos , Glutationa Peroxidase/metabolismo , Compostos Organosselênicos/farmacologia , Fatores de Transcrição/efeitos dos fármacos , Transcrição Gênica , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , Relação Dose-Resposta a Droga , Ativação Enzimática , Fator de Transcrição de Proteínas de Ligação GA , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Genes Reporter , Glutationa/análise , Glutationa/efeitos dos fármacos , Glutationa/metabolismo , Hepatoblastoma/metabolismo , Humanos , Isoindóis , Cinética , Luciferases/metabolismo , Elementos de Resposta/efeitos dos fármacos , Tiorredoxina Dissulfeto Redutase/metabolismo , Fatores de Transcrição/metabolismo , Ativação Transcricional
14.
Mol Pharmacol ; 64(1): 113-22, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12815167

RESUMO

Treatment of rats with peroxisome proliferators is known to affect gene expression, including suppression of CYP2C11. The current study examined the mechanism of negative regulation of CYP2C11, comparing the effects of a classic peroxisome proliferator, nafenopin, with those of the steroid dehydroepiandrosterone (DHEA). In vivo dose-response experiments for DHEA were carried out with rats. Only the highest dose of DHEA in the diet (0.45%), a dose previously shown to produce peroxisome proliferation, caused suppression of CYP2C11 expression. Lower doses of DHEA (0.012 to 0.20% in diet) had little effect on CYP2C11 expression. In HepG2 cells, negative regulation of a CYP2C11 reporter gene by nafenopin required coexpression of PPARalpha, whereas negative regulation by DHEA did not. Deletion analysis revealed that the responsive region for both DHEA and nafenopin was between -108 and -60 relative to the transcription start site. Mutations in several putative transcription factor binding sites in the 5'-flanking region of CYP2C11 were produced. A mutation at -121 bp significantly diminished basal expression of CYP2C11 but did not affect negative regulation by DHEA or nafenopin. A mutation at -75 bp had only a small effect on basal expression but completely abolished negative regulation by DHEA and nafenopin. Gel shift experiments indicated that PPARalpha/RXRalpha heterodimers do not bind DNA in this region. Therefore, the sequence at -75 bp of CYP2C11 is necessary for negative regulation by both DHEA and nafenopin. However, the upstream events leading to suppression at this site must differ for DHEA and nafenopin.


Assuntos
Hidrocarboneto de Aril Hidroxilases/metabolismo , Desidroepiandrosterona/farmacologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Proliferadores de Peroxissomos/farmacologia , Sequências Reguladoras de Ácido Nucleico/efeitos dos fármacos , Esteroide 16-alfa-Hidroxilase/metabolismo , Região 5'-Flanqueadora/efeitos dos fármacos , Região 5'-Flanqueadora/genética , Animais , Hidrocarboneto de Aril Hidroxilases/genética , Sequência de Bases , Família 2 do Citocromo P450 , Dimerização , Relação Dose-Resposta a Droga , Regulação para Baixo/efeitos dos fármacos , Deleção de Genes , Humanos , Masculino , Dados de Sequência Molecular , Nafenopina/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores do Ácido Retinoico/metabolismo , Receptores X de Retinoides , Esteroide 16-alfa-Hidroxilase/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica/efeitos dos fármacos , Transfecção , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA