Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38076921

RESUMO

Targeting the distinct metabolic needs of tumor cells has recently emerged as a promising strategy for cancer therapy. The heterogeneous, context-dependent nature of cancer cell metabolism, however, poses challenges in identifying effective therapeutic interventions. Here, we utilize various unsupervised and supervised multivariate modeling approaches to systematically pinpoint recurrent metabolic states within hundreds of cancer cell lines, elucidate their association with tissue lineage and growth environments, and uncover vulnerabilities linked to their metabolic states across diverse genetic and tissue contexts. We validate key findings using data from an independent set of cell lines, pharmacological screens, and via single-cell analysis of patient-derived tumors. Our analysis uncovers new synthetically lethal associations between the tumor metabolic state (e.g., oxidative phosphorylation), driver mutations (e.g., loss of tumor suppressor PTEN), and actionable biological targets (e.g., mitochondrial electron transport chain). Investigating these relationships could inform the development of more precise and context-specific, metabolism-targeted cancer therapies.

2.
Cancer Res ; 83(2): 316-331, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36409827

RESUMO

Neurofibromin 1 (NF1) loss of function (LoF) mutations are frequent in melanoma and drive hyperactivated RAS and tumor growth. NF1LoF melanoma cells, however, do not show consistent sensitivity to individual MEK, ERK, or PI3K/mTOR inhibitors. To identify more effective therapeutic strategies for treating NF1LoF melanoma, we performed a targeted kinase inhibitor screen. A tool compound named MTX-216 was highly effective in blocking NF1LoF melanoma growth in vitro and in vivo. Single-cell analysis indicated that drug-induced cytotoxicity was linked to effective cosuppression of proliferation marker Ki-67 and ribosomal protein S6 phosphorylation. The antitumor efficacy of MTX-216 was dependent on its ability to inhibit not only PI3K, its nominal target, but also SYK. MTX-216 suppressed expression of a group of genes that regulate mitochondrial electron transport chain and are associated with poor survival in patients with NF1LoF melanoma. Furthermore, combinations of inhibitors targeting either MEK or PI3K/mTOR with an independent SYK kinase inhibitor or SYK knockdown reduced the growth of NF1LoF melanoma cells. These studies provide a path to exploit SYK dependency to selectively target NF1LoF melanoma cells. SIGNIFICANCE: A kinase inhibitor screen identifies SYK as a targetable vulnerability in melanoma cells with NF1 loss of function.


Assuntos
Antineoplásicos , Melanoma , Humanos , Neurofibromina 1/genética , Quinase Syk/genética , Quinase Syk/uso terapêutico , Linhagem Celular Tumoral , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/patologia , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Antineoplásicos/farmacologia , Quinases de Proteína Quinase Ativadas por Mitógeno , Fosfatidilinositol 3-Quinases/metabolismo
3.
Cell Rep ; 40(5): 111147, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35926467

RESUMO

Cellular plasticity associated with fluctuations in transcriptional programs allows individual cells in a tumor to adopt heterogeneous differentiation states and switch phenotype during their adaptive responses to therapies. Despite increasing knowledge of such transcriptional programs, the molecular basis of cellular plasticity remains poorly understood. Here, we combine multiplexed transcriptional and protein measurements at population and single-cell levels with multivariate statistical modeling to show that the state of AP-1 transcription factor network plays a unifying role in explaining diverse patterns of plasticity in melanoma. We find that a regulated balance among AP-1 factors cJUN, JUND, FRA2, FRA1, and cFOS determines the intrinsic diversity of differentiation states and adaptive responses to MAPK inhibitors in melanoma cells. Perturbing this balance through genetic depletion of specific AP-1 proteins, or by MAPK inhibitors, shifts cellular heterogeneity in a predictable fashion. Thus, AP-1 may serve as a critical node for manipulating cellular plasticity with potential therapeutic implications.


Assuntos
Melanoma , Fator de Transcrição AP-1 , Linhagem Celular Tumoral , Plasticidade Celular , Regulação da Expressão Gênica , Humanos , Melanoma/patologia , Inibidores de Proteínas Quinases/farmacologia , Fator de Transcrição AP-1/metabolismo
4.
Nat Commun ; 12(1): 1536, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33750776

RESUMO

Hyperactivation of the MAPK signaling pathway motivates the clinical use of MAPK inhibitors for BRAF-mutant melanomas. Heterogeneity in differentiation state due to epigenetic plasticity, however, results in cell-to-cell variability in the state of MAPK dependency, diminishing the efficacy of MAPK inhibitors. To identify key regulators of such variability, we screen 276 epigenetic-modifying compounds, individually or combined with MAPK inhibitors, across genetically diverse and isogenic populations of melanoma cells. Following single-cell analysis and multivariate modeling, we identify three classes of epigenetic inhibitors that target distinct epigenetic states associated with either one of the lysine-specific histone demethylases Kdm1a or Kdm4b, or BET bromodomain proteins. While melanocytes remain insensitive, the anti-tumor efficacy of each inhibitor is predicted based on melanoma cells' differentiation state and MAPK activity. Our systems pharmacology approach highlights a path toward identifying actionable epigenetic factors that extend the BRAF oncogene addiction paradigm on the basis of tumor cell differentiation state.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Epigenômica/métodos , Melanoma/metabolismo , Vício Oncogênico , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Feminino , Histona Desmetilases/metabolismo , Humanos , Histona Desmetilases com o Domínio Jumonji/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Melanócitos/metabolismo , Melanoma/genética , Camundongos , Camundongos Nus , Mutação , Vício Oncogênico/genética , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/genética , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
5.
PLoS Comput Biol ; 16(2): e1007688, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32084135

RESUMO

Cell-to-cell variability generates subpopulations of drug-tolerant cells that diminish the efficacy of cancer drugs. Efficacious combination therapies are thus needed to block drug-tolerant cells via minimizing the impact of heterogeneity. Probabilistic models such as Bliss independence have been developed to evaluate drug interactions and their combination efficacy based on probabilities of specific actions mediated by drugs individually and in combination. In practice, however, these models are often applied to conventional dose-response curves in which a normalized parameter with a value between zero and one, generally referred to as fraction of cells affected (fa), is used to evaluate the efficacy of drugs and their combined interactions. We use basic probability theory, computer simulations, time-lapse live cell microscopy, and single-cell analysis to show that fa metrics may bias our assessment of drug efficacy and combination effectiveness. This bias may be corrected when dynamic probabilities of drug-induced phenotypic events, i.e. induction of cell death and inhibition of division, at a single-cell level are used as metrics to assess drug efficacy. Probabilistic phenotype metrics offer the following three benefits. First, in contrast to the commonly used fa metrics, they directly represent probabilities of drug action in a cell population. Therefore, they deconvolve differential degrees of drug effect on tumor cell killing versus inhibition of cell division, which may not be correlated for many drugs. Second, they increase the sensitivity of short-term drug response assays to cell-to-cell heterogeneities and the presence of drug-tolerant subpopulations. Third, their probabilistic nature allows them to be used directly in unbiased evaluation of synergistic efficacy in drug combinations using probabilistic models such as Bliss independence. Altogether, we envision that probabilistic analysis of single-cell phenotypes complements currently available assays via improving our understanding of heterogeneity in drug response, thereby facilitating the discovery of more efficacious combination therapies to block drug-tolerant cells.


Assuntos
Antineoplásicos/uso terapêutico , Interações Medicamentosas , Quimioterapia Combinada , Neoplasias/tratamento farmacológico , Neoplasias/fisiopatologia , Probabilidade , Linhagem Celular Tumoral , Terapia Combinada , Simulação por Computador , Humanos , Melanoma/tratamento farmacológico , Melanoma/fisiopatologia , Modelos Estatísticos , Fenótipo , Distribuição de Poisson
6.
Cancers (Basel) ; 11(10)2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31581557

RESUMO

About eight percent of all human tumors (including 50% of melanomas) carry gain-of-function mutations in the BRAF oncogene. Mutated BRAF and subsequent hyperactivation of the MAPK signaling pathway has motivated the use of MAPK-targeted therapies for these tumors. Despite great promise, however, MAPK-targeted therapies in BRAF-mutant tumors are limited by the emergence of drug resistance. Mechanisms of resistance include genetic, non-genetic and epigenetic alterations. Epigenetic plasticity, often modulated by histone-modifying enzymes and gene regulation, can influence a tumor cell's BRAF dependency and therefore, response to therapy. In this review, focusing primarily on class 1 BRAF-mutant cells, we will highlight recent work on the contribution of epigenetic mechanisms to inter- and intratumor cell heterogeneity in MAPK-targeted therapy response.

7.
Proc Natl Acad Sci U S A ; 115(23): E5279-E5288, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29784813

RESUMO

A protein synthesis enzyme, leucyl-tRNA synthetase (LRS), serves as a leucine sensor for the mechanistic target of rapamycin complex 1 (mTORC1), which is a central effector for protein synthesis, metabolism, autophagy, and cell growth. However, its significance in mTORC1 signaling and cancer growth and its functional relationship with other suggested leucine signal mediators are not well-understood. Here we show the kinetics of the Rag GTPase cycle during leucine signaling and that LRS serves as an initiating "ON" switch via GTP hydrolysis of RagD that drives the entire Rag GTPase cycle, whereas Sestrin2 functions as an "OFF" switch by controlling GTP hydrolysis of RagB in the Rag GTPase-mTORC1 axis. The LRS-RagD axis showed a positive correlation with mTORC1 activity in cancer tissues and cells. The GTP-GDP cycle of the RagD-RagB pair, rather than the RagC-RagA pair, is critical for leucine-induced mTORC1 activation. The active RagD-RagB pair can overcome the absence of the RagC-RagA pair, but the opposite is not the case. This work suggests that the GTPase cycle of RagD-RagB coordinated by LRS and Sestrin2 is critical for controlling mTORC1 activation, and thus will extend the current understanding of the amino acid-sensing mechanism.


Assuntos
Leucina-tRNA Ligase/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Linhagem Celular/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Humanos , Leucina/metabolismo , Lisossomos/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas Nucleares/metabolismo , Ligação Proteica , Biossíntese de Proteínas , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
8.
Mol Syst Biol ; 13(1): 905, 2017 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-28069687

RESUMO

Treatment of BRAF-mutant melanomas with MAP kinase pathway inhibitors is paradigmatic of the promise of precision cancer therapy but also highlights problems with drug resistance that limit patient benefit. We use live-cell imaging, single-cell analysis, and molecular profiling to show that exposure of tumor cells to RAF/MEK inhibitors elicits a heterogeneous response in which some cells die, some arrest, and the remainder adapt to drug. Drug-adapted cells up-regulate markers of the neural crest (e.g., NGFR), a melanocyte precursor, and grow slowly. This phenotype is transiently stable, reverting to the drug-naïve state within 9 days of drug withdrawal. Transcriptional profiling of cell lines and human tumors implicates a c-Jun/ECM/FAK/Src cascade in de-differentiation in about one-third of cell lines studied; drug-induced changes in c-Jun and NGFR levels are also observed in xenograft and human tumors. Drugs targeting the c-Jun/ECM/FAK/Src cascade as well as BET bromodomain inhibitors increase the maximum effect (Emax) of RAF/MEK kinase inhibitors by promoting cell killing. Thus, analysis of reversible drug resistance at a single-cell level identifies signaling pathways and inhibitory drugs missed by assays that focus on cell populations.


Assuntos
Indóis/administração & dosagem , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Melanoma/genética , Proteínas do Tecido Nervoso/genética , Proteínas Proto-Oncogênicas B-raf/genética , Receptores de Fator de Crescimento Neural/genética , Sulfonamidas/administração & dosagem , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Indóis/farmacologia , Melanoma/tratamento farmacológico , Camundongos , Mutação , Análise de Célula Única , Sulfonamidas/farmacologia , Vemurafenib , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Curr Protoc Chem Biol ; 8(4): 251-264, 2016 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-27925668

RESUMO

Cyclic Immunofluorescence (CycIF) is a public-domain method for performing highly multiplexed immunofluorescence imaging using a conventional epifluorescence microscope. It uses simple reagents and existing antibodies to construct images with up to 30 channels by sequential 4- to 6-channel imaging followed by fluorophore inactivation. Three variant methods are described, the most generally useful of which involves staining fixed cells with antibodies directly conjugated to Alexa Fluor dyes and imaging in four colors, inactivating fluorophores using a mild base in the presence of hydrogen peroxide and light, and then performing another round of staining and imaging. Cell morphology is preserved through multiple rounds of CycIF, and signal-to-noise ratios appear to increase. Unlike antibody-stripping methods, CycIF is gentle and optimized for monolayers of cultured cells. A second protocol involves indirect immunofluorescence and a third enables chemical inactivation of genetically encoded fluorescent proteins, allowing multiplex immunofluorescence to be combined with live-cell analysis of cells expressing fluorescent reporter proteins. © 2016 by John Wiley & Sons, Inc.


Assuntos
Microscopia de Fluorescência/métodos , Análise de Célula Única/métodos , Anticorpos/química , Linhagem Celular Tumoral , Corantes/química , Humanos , Imunoconjugados/química
10.
Curr Protoc Chem Biol ; 8(3): 179-196, 2016 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-27622568

RESUMO

Reverse phase protein arrays (RPPAs), also called reverse phase lysate arrays (RPLAs), involve immobilizing cell or tissue lysates, in small spots, onto solid supports which are then probed with primary antibodies specific for proteins or post-translational modifications of interest. RPPA assays are well suited for large-scale, high-throughput measurement of protein and PTM levels in cells and tissues. RPPAs are affordable and highly multiplexable, as a large number of arrays can readily be produced in parallel and then probed separately with distinct primary antibodies. This article describes a procedure for treating cells and preparing cell lysates, as well as a procedure for generating RPPAs using these lysates. A method for probing, imaging, and analyzing RPPAs is also described. These procedures are readily adaptable to a wide range of studies of cell signaling in response to drugs and other perturbations. © 2016 by John Wiley & Sons, Inc.


Assuntos
Análise Serial de Proteínas/métodos , Ensaios de Triagem em Larga Escala/métodos , Humanos , Imagem Óptica/métodos , Transdução de Sinais
11.
Science ; 352(6282): 189-96, 2016 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-27124452

RESUMO

To explore the distinct genotypic and phenotypic states of melanoma tumors, we applied single-cell RNA sequencing (RNA-seq) to 4645 single cells isolated from 19 patients, profiling malignant, immune, stromal, and endothelial cells. Malignant cells within the same tumor displayed transcriptional heterogeneity associated with the cell cycle, spatial context, and a drug-resistance program. In particular, all tumors harbored malignant cells from two distinct transcriptional cell states, such that tumors characterized by high levels of the MITF transcription factor also contained cells with low MITF and elevated levels of the AXL kinase. Single-cell analyses suggested distinct tumor microenvironmental patterns, including cell-to-cell interactions. Analysis of tumor-infiltrating T cells revealed exhaustion programs, their connection to T cell activation and clonal expansion, and their variability across patients. Overall, we begin to unravel the cellular ecosystem of tumors and how single-cell genomics offers insights with implications for both targeted and immune therapies.


Assuntos
Melanoma/genética , Melanoma/secundário , Neoplasias Cutâneas/patologia , Microambiente Tumoral , Sequência de Bases , Comunicação Celular , Ciclo Celular , Resistencia a Medicamentos Antineoplásicos/genética , Células Endoteliais/patologia , Genômica , Humanos , Imunoterapia , Ativação Linfocitária , Melanoma/terapia , Fator de Transcrição Associado à Microftalmia/metabolismo , Metástase Neoplásica , RNA/genética , Análise de Sequência de RNA , Análise de Célula Única , Células Estromais/patologia , Linfócitos T/imunologia , Linfócitos T/patologia , Transcriptoma
12.
Nat Commun ; 6: 8390, 2015 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-26399630

RESUMO

Single-cell analysis reveals aspects of cellular physiology not evident from population-based studies, particularly in the case of highly multiplexed methods such as mass cytometry (CyTOF) able to correlate the levels of multiple signalling, differentiation and cell fate markers. Immunofluorescence (IF) microscopy adds information on cell morphology and the microenvironment that are not obtained using flow-based techniques, but the multiplicity of conventional IF is limited. This has motivated development of imaging methods that require specialized instrumentation, exotic reagents or proprietary protocols that are difficult to reproduce in most laboratories. Here we report a public-domain method for achieving high multiplicity single-cell IF using cyclic immunofluorescence (CycIF), a simple and versatile procedure in which four-colour staining alternates with chemical inactivation of fluorophores to progressively build a multichannel image. Because CycIF uses standard reagents and instrumentation and is no more expensive than conventional IF, it is suitable for high-throughput assays and screening applications.


Assuntos
Corantes Fluorescentes , Ensaios de Triagem em Larga Escala/métodos , Microscopia de Fluorescência/métodos , Análise de Célula Única/métodos , Linhagem Celular Tumoral , Citometria de Fluxo , Imunofluorescência , Ensaios de Triagem em Larga Escala/economia , Ensaios de Triagem em Larga Escala/instrumentação , Humanos , Microscopia de Fluorescência/economia , Microscopia de Fluorescência/instrumentação , Análise de Célula Única/economia , Análise de Célula Única/instrumentação , Coloração e Rotulagem
13.
Mol Syst Biol ; 11(3): 797, 2015 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-25814555

RESUMO

Drugs that inhibit RAF/MEK signaling, such as vemurafenib, elicit profound but often temporary anti-tumor responses in patients with BRAF(V) (600E) melanoma. Adaptive responses to RAF/MEK inhibition occur on a timescale of hours to days, involve homeostatic responses that reactivate MAP kinase signaling and compensatory mitogenic pathways, and attenuate the anti-tumor effects of RAF/MEK inhibitors. We profile adaptive responses across a panel of melanoma cell lines using multiplex biochemical measurement, single-cell assays, and statistical modeling and show that adaptation involves at least six signaling cascades that act to reduce drug potency (IC50) and maximal effect (i.e., Emax â‰ª 1). Among these cascades, we identify a role for JNK/c-Jun signaling in vemurafenib adaptation and show that RAF and JNK inhibitors synergize in cell killing. This arises because JNK inhibition prevents a subset of cells in a cycling population from becoming quiescent upon vemurafenib treatment, thereby reducing drug Emax. Our findings demonstrate the breadth and diversity of adaptive responses to RAF/MEK inhibition and a means to identify which steps in a signaling cascade are most predictive of phenotypic response.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Indóis/farmacologia , Melanoma/genética , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/genética , Sulfonamidas/farmacologia , Apoptose , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Humanos , Sistema de Sinalização das MAP Quinases , Melanoma/tratamento farmacológico , Mutação , Vemurafenib
14.
Nat Chem Biol ; 9(11): 708-14, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24013279

RESUMO

Large-scale analysis of cellular response to anticancer drugs typically focuses on variation in potency (half-maximum inhibitory concentration, (IC50)), assuming that it is the most important difference between effective and ineffective drugs or sensitive and resistant cells. We took a multiparametric approach involving analysis of the slope of the dose-response curve, the area under the curve and the maximum effect (Emax). We found that some of these parameters vary systematically with cell line and others with drug class. For cell-cycle inhibitors, Emax often but not always correlated with cell proliferation rate. For drugs targeting the Akt/PI3K/mTOR pathway, dose-response curves were unusually shallow. Classical pharmacology has no ready explanation for this phenomenon, but single-cell analysis showed that it correlated with significant and heritable cell-to-cell variability in the extent of target inhibition. We conclude that parameters other than potency should be considered in the comparative analysis of drug response, particularly at clinically relevant concentrations near and above the IC50.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Antineoplásicos/química , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Humanos , Relação Estrutura-Atividade
15.
Front Physiol ; 3: 170, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22685435

RESUMO

The NF-κB signaling pathway is central to the body's response to many pathogens. Mathematical models based on cell culture experiments have identified important molecular mechanisms controlling the dynamics of NF-κB signaling, but the dynamics of this pathway have never been studied in the context of an infection in a host. Here, we incorporate these dynamics into a virtual infection setting. We build a multi-scale model of the immune response to the pathogen Mycobacterium tuberculosis (Mtb) to explore the impact of NF-κB dynamics occurring across molecular, cellular, and tissue scales in the lung. NF-κB signaling is triggered via tumor necrosis factor-α (TNF) binding to receptors on macrophages; TNF has been shown to play a key role in infection dynamics in humans and multiple animal systems. Using our multi-scale model, we predict the impact of TNF-induced NF-κB-mediated responses on the outcome of infection at the level of a granuloma, an aggregate of immune cells and bacteria that forms in response to infection and is key to containment of infection and clinical latency. We show how the stability of mRNA transcripts corresponding to NF-κB-mediated responses significantly controls bacterial load in a granuloma, inflammation level in tissue, and granuloma size. Because we incorporate intracellular signaling pathways explicitly, our analysis also elucidates NF-κB-associated signaling molecules and processes that may be new targets for infection control.

16.
J Immunol ; 188(7): 3169-78, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22379032

RESUMO

Increased rates of tuberculosis (TB) reactivation have been reported in humans treated with TNF-α (TNF)-neutralizing drugs, and higher rates are observed with anti-TNF Abs (e.g., infliximab) as compared with TNF receptor fusion protein (etanercept). Mechanisms driving differential reactivation rates and differences in drug action are not known. We use a computational model of a TB granuloma formation that includes TNF/TNF receptor dynamics to elucidate these mechanisms. Our analyses yield three important insights. First, drug binding to membrane-bound TNF critically impairs granuloma function. Second, a higher risk of reactivation induced from Ab-type treatments is primarily due to differences in TNF/drug binding kinetics and permeability. Apoptotic and cytolytic activities of Abs and pharmacokinetic fluctuations in blood concentration of drug are not essential to inducing TB reactivation. Third, we predict specific host factors that, if augmented, would improve granuloma function during anti-TNF therapy. Our findings have implications for the development of safer anti-TNF drugs to treat inflammatory diseases.


Assuntos
Anticorpos Monoclonais/efeitos adversos , Antirreumáticos/efeitos adversos , Simulação por Computador , Tuberculose Latente/fisiopatologia , Modelos Biológicos , Mycobacterium tuberculosis/crescimento & desenvolvimento , Receptores do Fator de Necrose Tumoral/efeitos dos fármacos , Tuberculoma/fisiopatologia , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Adalimumab , Anticorpos Monoclonais/sangue , Anticorpos Monoclonais/farmacocinética , Anticorpos Monoclonais Humanizados/efeitos adversos , Anticorpos Monoclonais Humanizados/sangue , Anticorpos Monoclonais Humanizados/farmacocinética , Antirreumáticos/sangue , Antirreumáticos/classificação , Antirreumáticos/farmacocinética , Apoptose/efeitos dos fármacos , Certolizumab Pegol , Citotoxicidade Imunológica , Etanercepte , Humanos , Fragmentos Fab das Imunoglobulinas/efeitos adversos , Fragmentos Fab das Imunoglobulinas/sangue , Imunoglobulina G/efeitos adversos , Imunoglobulina G/sangue , Infliximab , Tuberculose Latente/imunologia , Mycobacterium tuberculosis/imunologia , Permeabilidade , Polietilenoglicóis/efeitos adversos , Polietilenoglicóis/farmacocinética , Ligação Proteica , Receptores do Fator de Necrose Tumoral/sangue , Receptores do Fator de Necrose Tumoral/fisiologia , Risco , Tuberculoma/imunologia , Tuberculoma/microbiologia , Tuberculose Pulmonar/imunologia , Tuberculose Pulmonar/fisiopatologia , Fator de Necrose Tumoral alfa/fisiologia
17.
J Immunol ; 186(6): 3472-83, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21321109

RESUMO

Multiple immune factors control host responses to Mycobacterium tuberculosis infection, including the formation of granulomas, which are aggregates of immune cells whose function may reflect success or failure of the host to contain infection. One such factor is TNF-α. TNF-α has been experimentally characterized to have the following activities in M. tuberculosis infection: macrophage activation, apoptosis, and chemokine and cytokine production. Availability of TNF-α within a granuloma has been proposed to play a critical role in immunity to M. tuberculosis. However, in vivo measurement of a TNF-α concentration gradient and activities within a granuloma are not experimentally feasible. Further, processes that control TNF-α concentration and activities in a granuloma remain unknown. We developed a multiscale computational model that includes molecular, cellular, and tissue scale events that occur during granuloma formation and maintenance in lung. We use our model to identify processes that regulate TNF-α concentration and cellular behaviors and thus influence the outcome of infection within a granuloma. Our model predicts that TNF-αR1 internalization kinetics play a critical role in infection control within a granuloma, controlling whether there is clearance of bacteria, excessive inflammation, containment of bacteria within a stable granuloma, or uncontrolled growth of bacteria. Our results suggest that there is an interplay between TNF-α and bacterial levels in a granuloma that is controlled by the combined effects of both molecular and cellular scale processes. Finally, our model elucidates processes involved in immunity to M. tuberculosis that may be new targets for therapy.


Assuntos
Biologia Computacional/métodos , Granuloma/imunologia , Modelos Imunológicos , Simulação de Dinâmica Molecular , Mycobacterium tuberculosis/crescimento & desenvolvimento , Mycobacterium tuberculosis/imunologia , Receptores Tipo I de Fatores de Necrose Tumoral/fisiologia , Tuberculose Pulmonar/imunologia , Granuloma/microbiologia , Granuloma/patologia , Humanos , Mediadores da Inflamação/química , Mediadores da Inflamação/metabolismo , Mediadores da Inflamação/fisiologia , Ligantes , Mycobacterium tuberculosis/patogenicidade , Valor Preditivo dos Testes , Receptores Tipo I de Fatores de Necrose Tumoral/química , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Transdução de Sinais/imunologia , Tuberculose Pulmonar/microbiologia , Tuberculose Pulmonar/patologia , Fator de Necrose Tumoral alfa/química , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/fisiologia
18.
PLoS Comput Biol ; 6(5): e1000778, 2010 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-20463877

RESUMO

Tuberculosis (TB) granulomas are organized collections of immune cells comprised of macrophages, lymphocytes and other cells that form in the lung as a result of immune response to Mycobacterium tuberculosis (Mtb) infection. Formation and maintenance of granulomas are essential for control of Mtb infection and are regulated in part by a pro-inflammatory cytokine, tumor necrosis factor-alpha (TNF). To characterize mechanisms that control TNF availability within a TB granuloma, we developed a multi-scale two compartment partial differential equation model that describes a granuloma as a collection of immune cells forming concentric layers and includes TNF/TNF receptor binding and trafficking processes. We used the results of sensitivity analysis as a tool to identify experiments to measure critical model parameters in an artificial experimental model of a TB granuloma induced in the lungs of mice following injection of mycobacterial antigen-coated beads. Using our model, we then demonstrated that the organization of immune cells within a TB granuloma as well as TNF/TNF receptor binding and intracellular trafficking are two important factors that control TNF availability and may spatially coordinate TNF-induced immunological functions within a granuloma. Further, we showed that the neutralization power of TNF-neutralizing drugs depends on their TNF binding characteristics, including TNF binding kinetics, ability to bind to membrane-bound TNF and TNF binding stoichiometry. To further elucidate the role of TNF in the process of granuloma development, our modeling and experimental findings on TNF-associated molecular scale aspects of the granuloma can be incorporated into larger scale models describing the immune response to TB infection. Ultimately, these modeling and experimental results can help identify new strategies for TB disease control/therapy.


Assuntos
Granuloma/metabolismo , Modelos Biológicos , Tuberculose/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Algoritmos , Animais , Apoptose/fisiologia , Simulação por Computador , Células Dendríticas/imunologia , Granuloma/imunologia , Granuloma/microbiologia , Granuloma/patologia , Linfócitos/imunologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos CBA , Mycobacterium tuberculosis , Ligação Proteica , Receptores do Fator de Necrose Tumoral/metabolismo , Tuberculina/metabolismo , Tuberculose/imunologia , Tuberculose/patologia , Fator de Necrose Tumoral alfa/antagonistas & inibidores
19.
Cell Biol Int ; 31(3): 299-303, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17196845

RESUMO

An intensive study is underway to evaluate different potential candidates for cell therapy of neurodegenerative disorders such as Parkinson's disease (PD). Availability and lower immunogenicity compared to other sources for stem cell therapy such as bone marrow have made human umbilical cord blood stem cells a considerable source for cell therapy. The present study aimed to investigate differentiation of recently introduced pluripotent cord blood stem cells, known as unrestricted somatic stem cells (USSCs), into cells with neural features in serum-withdrawal medium. Using reverse transcription polymerase chain reaction and immunocytochemistry assays, we have shown the expression of neuron-specific genes following a 2week treatment of USSCs in serum-withdrawal induction medium. In addition, we have found that USSCs and USSC-derived neuron-like cells express transcripts of genes associated with development and/or survival of dopaminergic mesencephalic neurons including En1, En2, Nurr1, Ptx3, Pax2, Wnt1 and Wnt3a. The expression of dopamine-associated genes suggests that these cells may be potential candidates to be used for cell therapy of PD.


Assuntos
Células da Medula Óssea/citologia , Técnicas de Cultura de Células/métodos , Dopamina/genética , Células-Tronco Multipotentes/citologia , Neurônios/citologia , Animais , Células da Medula Óssea/metabolismo , Diferenciação Celular , Terapia Baseada em Transplante de Células e Tecidos , Transplante de Células-Tronco de Sangue do Cordão Umbilical , Sangue Fetal/citologia , Sangue Fetal/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Marcadores Genéticos/genética , Humanos , Células-Tronco Multipotentes/metabolismo , Neurônios/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
20.
Proc Natl Acad Sci U S A ; 103(26): 9976-81, 2006 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-16782810

RESUMO

In maturing T lineage cells, the helix-loop-helix protein E47 has been shown to enforce a critical proliferation and developmental checkpoint commonly referred to as beta selection. To examine how E47 regulates cellular expansion and developmental progression, we have used an E2A-deficient lymphoma cell line and DNA microarray analysis to identify immediate E47 target genes. Hierarchical cluster analysis of gene expression patterns revealed that E47 coordinately regulates the expression of genes involved in cell survival, cell cycle progression, lipid metabolism, stress response, and lymphoid maturation. These include Plcgamma2, Cdk6, CD25, Tox, Gadd45a, Gadd45b, Gfi1, Gfi1b, Socs1, Socs3, Id2, Eto2, and Xbp1. We propose a regulatory network linking Janus kinase (JAK)/signal transducer and activator of transcription (STAT)-mediated signaling, E47, and suppressor of cytokine signaling (SOCS) proteins in a common pathway. Finally, we suggest that the aberrant activation of Cdk6 in E47-deficient T lineage cells contributes to the development of lymphoid malignancy.


Assuntos
Regulação Neoplásica da Expressão Gênica , Linfoma/genética , Linfócitos T/imunologia , Fatores de Transcrição TCF/fisiologia , Ciclo Celular/genética , Linhagem Celular Tumoral , Linhagem da Célula/genética , Proliferação de Células , Sobrevivência Celular/genética , Citocinas/metabolismo , Humanos , Janus Quinase 1 , Metabolismo dos Lipídeos/genética , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Tirosina Quinases/genética , Receptores de Interleucina-2/genética , Transdução de Sinais , Proteínas Supressoras da Sinalização de Citocina/genética , Linfócitos T/citologia , Linfócitos T/metabolismo , Fatores de Transcrição TCF/genética , Proteína 1 Semelhante ao Fator 7 de Transcrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA