Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
J Biol Chem ; 300(1): 105546, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38072053

RESUMO

ATP-binding cassette (ABC) transporters are ubiquitous membrane proteins responsible for the translocation of a wide diversity of substrates across biological membranes. Some of them confer multidrug or antimicrobial resistance to cancer cells and pathogenic microorganisms, respectively. Despite a wealth of structural data gained in the last two decades, the molecular mechanism of these multidrug efflux pumps remains elusive, including the extent of separation between the two nucleotide-binding domains (NBDs) during the transport cycle. Based on recent outward-facing structures of BmrA, a homodimeric multidrug ABC transporter from Bacillus subtilis, we introduced a cysteine mutation near the C-terminal end of the NBDs to analyze the impact of disulfide-bond formation on BmrA function. Interestingly, the presence of the disulfide bond between the NBDs did not prevent the ATPase, nor did it affect the transport of Hoechst 33342 and doxorubicin. Yet, the 7-amino-actinomycin D was less efficiently transported, suggesting that a further opening of the transporter might improve its ability to translocate this larger compound. We solved by cryo-EM the apo structures of the cross-linked mutant and the WT protein. Both structures are highly similar, showing an intermediate opening between their NBDs while their C-terminal extremities remain in close proximity. Distance measurements obtained by electron paramagnetic resonance spectroscopy support the intermediate opening found in these 3D structures. Overall, our data suggest that the NBDs of BmrA function with a tweezers-like mechanism distinct from the related lipid A exporter MsbA.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Bacillus subtilis , Proteínas de Bactérias , Proteínas de Transporte , Nucleotídeos , Trifosfato de Adenosina/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Bacillus subtilis/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Dissulfetos/metabolismo , Nucleotídeos/metabolismo , Domínios Proteicos , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Cisteína/química , Cisteína/genética , Transporte Biológico
2.
Drug Resist Updat ; 71: 100992, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37567064

RESUMO

ATP-binding cassette (ABC) superfamily comprises a large group of ubiquitous transmembrane proteins that play a crucial role in transporting a diverse spectrum of substrates across cellular membranes. They participate in a wide array of physiological and pathological processes including nutrient uptake, antigen presentation, toxin elimination, and drug resistance in cancer and microbial cells. ABC transporters couple ATP binding and hydrolysis to undergo conformational changes allowing substrate translocation. Within this superfamily, a set of ABC transporters has lost the capacity to hydrolyze ATP at one of their nucleotide-binding sites (NBS), called the non-catalytic NBS, whose importance became evident with extensive biochemistry carried out on yeast pleiotropic drug resistance (PDR) transporters. Recent single-particle cryogenic electron microscopy (cryo-EM) advances have further catapulted our understanding of the architecture of these pumps. We provide here a comprehensive overview of the structural and functional aspects of catalytically asymmetric ABC pumps with an emphasis on the PDR subfamily. Furthermore, given the increasing evidence of efflux-mediated antifungal resistance in clinical settings, we also discuss potential grounds to explore PDR transporters as therapeutic targets.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Proteínas de Membrana Transportadoras , Humanos , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Saccharomyces cerevisiae , Farmacorresistência Fúngica , Trifosfato de Adenosina/metabolismo
4.
Eur J Med Chem ; 248: 115070, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36628850

RESUMO

Human breast cancer resistance protein (BCRP), known also as ABCG2, plays a major role in multiple drug resistance (MDR) in tumor cells. Through this ABC transporter, cancer cells acquire the ability of resistance to structurally and functionally unrelated anticancer drugs. Nowadays, the design of ABCG2 inhibitors as potential agents to enhance the chemotherapy efficacy is an interesting strategy. In this context, we have used computer-aided drug design (CADD) based on available data of a large series of potent inhibitors from our groups as an approach in guiding the design of effective ABCG2 inhibitors. We report therein the results on the use of the FLAPpharm method to elucidate the pharmacophoric features of one of the ABCG2 binding sites involved in the regulation of the basal ATPase activity of the transporter. The predictivity of the model was evaluated by testing three predicted compounds which were found to induce high inhibitory activity of BCRP, in the nanomolar range for the best of them.


Assuntos
Antineoplásicos , Proteínas de Neoplasias , Humanos , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Resistência a Múltiplos Medicamentos , Antineoplásicos/farmacologia , Antineoplásicos/química , Desenho de Fármacos , Resistencia a Medicamentos Antineoplásicos
5.
Eur J Med Chem ; 244: 114863, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36334452

RESUMO

The iron-dependent, non-apoptotic cell death, known as ferroptosis is an emerging strategy for the development of anticancer drugs. RSL3 was identified as an activator of ferroptosis through the inhibition of the glutathione peroxidase 4 (GPX4) which plays a crucial role in the cellular lipid oxidative stress. RSL3 is characterized by the presence of an electrophilic chloroacetyl moiety, namely warhead which covalently bonds to the catalytic and nucleophilic selenocysteine residue (Sec46) of GPX4. Like the major ferroptosis inducers, RSL3 suffers from lack of selectivity toward tumor cells. In this study, we report the first synthesis of an antibody-drug conjugate (ADC) containing RSL3 fragment and trastuzumab with the aim to deliver the agent selectively to tumors. The synthesis uses a judiciously chosen strategy to preserve the vital but fragile warhead. Full characterization of the ADC was accomplished, demonstrating the generation of a homogeneous DAR 8 conjugate. The robustness of the synthesis was successfully applied to another ADC associating the anti-CD74 mAb milatuzumab. The ADC induces ferroptotic cell death through reactive oxygen species accumulation and increases the activity of doxorubicin. The ADC associating trastuzumab and RSL3 may therefore offer potential applications in vectorized therapy alone or in combination with conventional chemotherapies.


Assuntos
Ferroptose , Imunoconjugados , Peroxidação de Lipídeos , Carbolinas/farmacologia , Trastuzumab/farmacologia
6.
Eur J Med Chem ; 211: 113017, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33223263

RESUMO

Multidrug resistance membrane pumps reduce the efficacy of chemotherapies by exporting a wide panel of structurally-divergent drugs. Here, to take advantage of the polyspecificity of the human Breast Cancer Resistance Protein (BCRP/ABCG2) and the dimeric nature of this pump, new dimeric indenoindole-based inhibitors from the monomeric α,ß-unsaturated ketone 4b and phenolic derivative 5a were designed. A library of 18 homo/hetero-dimers was synthesised. Homo-dimerization shifted the inhibition efficacy from sub-micromolar to nanomolar range, correlated with the presence of 5a, linked by a 2-6 methylene-long linker. Non-toxic, the best dimers displayed a therapeutic ratio as high as 70,000. It has been found that the high potency of the best compound 7b that displays a KI of 17 nM is due to an uncompetitive behavior toward mitoxantrone efflux and specific for that drug, compared to Hoechst 33342 efflux. Such property may be useful to target such anticancer drug efflux mediated by ABCG2. Finally, at a molecular level, an uncompetitive mechanism by which substrate promotes inhibitor binding implies that at least 2 ligands should bind simultaneously to the drug-binding pocket of ABCG2.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Indóis/farmacologia , Proteínas de Neoplasias/antagonistas & inibidores , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/síntese química , Antineoplásicos/química , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Indóis/síntese química , Indóis/química , Simulação de Dinâmica Molecular , Estrutura Molecular , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Relação Estrutura-Atividade
7.
Eur J Med Chem ; 202: 112503, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32653696

RESUMO

The Breast Cancer Resistance Protein (BCRP/ABCG2) belongs to the G class of ABC (ATP-Binding Cassette) proteins, which is known as one of the main transporters involved in the multidrug resistance (MDR) phenotype that confer resistance to anticancer drugs. The aim of this study was to design, synthesize and develop new potent and selective inhibitors of BCRP that can be used to abolish MDR and potentialize clinically used anticancer agents. In previous reports, we showed the importance of chromone scaffold and hydrophobicity for the inhibition of ABC transporters. In the present study we report the design and development of chromones linked to one or two amino acids residues that are either hydrophobic or found in the structure of FTC, one of most potent (but highly toxic) inhibitors of BCRP. Herewith, we report the synthesis and evaluation of 13 compounds. The studied molecules were found to be not toxic and showed strong inhibition activity as well as high selectivity toward BCRP. The highest activity was obtained with the chromone bearing a valine residue (9c) which showed an inhibition activity against BCRP of 50 nM. The rationalization of the inhibition potential of the most active derivatives was performed through docking studies. Taken together, the ease of synthesis and the biological profile of these compounds render them as promising candidates for further development in the field of anticancer therapy.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Aminoácidos/farmacologia , Antineoplásicos/farmacologia , Cromonas/farmacologia , Proteínas de Neoplasias/antagonistas & inibidores , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Aminoácidos/química , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Cromonas/síntese química , Cromonas/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Camundongos , Simulação de Acoplamento Molecular , Estrutura Molecular , Proteínas de Neoplasias/metabolismo , Relação Estrutura-Atividade
8.
Sci Rep ; 10(1): 7616, 2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-32377003

RESUMO

The transporter Multidrug Resistance Protein 1 (MRP1, ABCC1) is implicated in multidrug resistant (MDR) phenotype of cancer cells. Glutathione (GSH) plays a key role in MRP1 transport activities. In addition, a ligand-stimulated GSH transport which triggers the death of cells overexpressing MRP1, by collateral sensitivity (CS), has been described. This CS could be a way to overcome the poor prognosis for patients suffering from a chemoresistant cancer. The molecular mechanism of such massive GSH transport and its connection to the other transport activities of MRP1 are unknown. In this context, we generated MRP1/MRP2 chimeras covering different regions, MRP2 being a close homolog that does not trigger CS. The one encompassing helices 16 and 17 led to the loss of CS and MDR phenotype without altering basal GSH transport. Within this region, the sole restoration of the original G1228 (D1236 in MRP2) close to the extracellular loop between the two helices fully rescued the CS (massive GSH efflux and cell death) but not the MDR phenotype. The flexibility of that loop and the binding of a CS agent like verapamil could favor a particular conformation for the massive transport of GSH, not related to other transport activities of MRP1.


Assuntos
Glutationa/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Transporte Biológico , Linhagem Celular , Membrana Celular/metabolismo , Humanos , Modelos Moleculares , Proteínas Associadas à Resistência a Múltiplos Medicamentos/química , Domínios Proteicos
9.
Molecules ; 25(3)2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-32050702

RESUMO

The resistance of tumors against anticancer drugs is a major impediment for chemotherapy. Tumors often develop multidrug resistance as a result of the cellular efflux of chemotherapeutic agents by ABC transporters such as P-glycoprotein (ABCB1/P-gp), Multidrug Resistance Protein 1 (ABCC1/MRP1), or Breast Cancer Resistance Protein (ABCG2/BCRP). By screening a chemolibrary comprising 140 compounds, we identified a set of naturally occurring aurones inducing higher cytotoxicity against P-gp-overexpressing multidrug-resistant (MDR) cells versus sensitive (parental, non-P-gp-overexpressing) cells. Follow-up studies conducted with the P-gp inhibitor tariquidar indicated that the MDR-selective toxicity of azaaurones is not mediated by P-gp. Azaaurone analogs possessing pronounced effects were then designed and synthesized. The knowledge gained from structure-activity relationships will pave the way for the design of a new class of anticancer drugs selectively targeting multidrug-resistant cancer cells.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Benzofuranos/química , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Antineoplásicos/síntese química , Linhagem Celular Tumoral , Cães , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Células Madin Darby de Rim Canino , Espectroscopia de Ressonância Magnética , Relação Estrutura-Atividade
10.
Biochim Biophys Acta Biomembr ; 1862(2): 183131, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31734312

RESUMO

ATP-binding cassette (ABC) transporters couple ATP binding and hydrolysis to the translocation of allocrites across membranes. Two shared nucleotide-binding sites (NBS) participate in this cycle. In asymmetric ABC pumps, only one of them hydrolyzes ATP, and the functional role of the other remains unclear. Using a drug-based selection strategy on the transport-deficient mutant L529A in the transmembrane domain of the Candida albicans pump Cdr1p; we identified a spontaneous secondary mutation restoring drug-translocation. The compensatory mutation Q1005H was mapped 60 Å away, precisely in the ABC signature sequence of the non-hydrolytic NBS. The same was observed in the homolog Cdr2p. Both the mutant and suppressor proteins remained ATPase active, but remarkably, the single Q1005H mutant displayed a two-fold reduced ATPase activity and a two-fold increased drug-resistance as compared to the wild-type protein, pointing at a direct control of the non-hydrolytic NBS in substrate-translocation through ATP binding in asymmetric ABC pumps.


Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Trifosfato de Adenosina/metabolismo , Antifúngicos/farmacologia , Proteínas Fúngicas/química , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Sítios de Ligação , Candida albicans/efeitos dos fármacos , Candida albicans/enzimologia , Candida albicans/metabolismo , Farmacorresistência Fúngica , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Mutação , Ligação Proteica
11.
Eur J Med Chem ; 184: 111772, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31630055

RESUMO

The membrane transporter BCRP/ABCG2 has emerged as a privileged biological target for the development of small compounds capable of abolishing multidrug resistance. In this context, the chromone skeleton was found as an excellent scaffold for the design of ABCG2 inhibitors. With the aims of optimizing and developing more potent modulators of the transporter, we herewith propose a multidisciplinary medicinal chemistry approach performed on this promising scaffold. A quantitative structure-activity relationship (QSAR) study on a series of chromone derivatives was first carried out, giving a robust model that was next applied to the design of 13 novel compounds derived from this nucleus. Two of the most active according to the model's prediction, namely compounds 22 (5-((3,5-dibromobenzyl)oxy)-N-(2-(5-methoxy-1H-indol-3-yl)ethyl)-4-oxo-4H-chromene-2-carboxamide) and 31 (5-((2,4-dibromobenzyl)oxy)-N-(2-(5-methoxy-1H-indol-3-yl)ethyl)-4-oxo-4H-chromene-2-carboxamide), were synthesized and had their biological potency evaluated by experimental assays, confirming their high inhibitory activity against ABCG2 (experimental EC50 below 0.10 µM). A supplementary docking study was then conducted on the newly designed derivatives, proposing possible binding modes of these novel molecules in the putative ligand-binding site of the transporter and explaining why the two aforementioned compounds exerted the best activity according to biological data. Results from this study are recommended as references for further research in hopes of discovering new potent inhibitors of ABCG2.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Cromonas/farmacologia , Simulação de Acoplamento Molecular , Proteínas de Neoplasias/antagonistas & inibidores , Relação Quantitativa Estrutura-Atividade , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Células Cultivadas , Cromonas/síntese química , Cromonas/química , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Estrutura Molecular , Proteínas de Neoplasias/metabolismo
12.
Eur J Med Chem ; 168: 373-384, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30826512

RESUMO

In this work, we aimed to understand the biological activity and the mechanism of action of three polymer-'ruthenium-cyclopentadienyl' conjugates (RuPMC) and a low molecular weight parental compound (Ru1) in cancer cells. Several biological assays were performed in ovarian (A2780) and breast (MCF7, MDA-MB-231) human cancer derived cell lines as well as in A2780cis, a cisplatin resistant cancer cell line. Our results show that all compounds have high activity towards cancer cells with low IC50 values in the micromolar range. We observed that all Ru-PMC compounds are mainly found inside the cells, in contrast with the parental low molecular weight compound Ru1 that was mainly found at the membrane. All compounds induced mitochondrial alterations. PMC3 and Ru1 caused F-actin cytoskeleton morphology changes and reduced the clonogenic ability of the cells. The conjugate PMC3 induced apoptosis at low concentrations comparing to cisplatin and could overcame the platinum resistance of A2780cis cancer cells. A proteomic analysis showed that these compounds induce alterations in several cellular proteins which are related to the phenotypic disorders induced by them. Our results suggest that PMC3 is foreseen as a lead candidate to future studies and acting through a different mechanism of action than cisplatin. Here we established the potential of these Ru compounds as new metallodrugs for cancer chemotherapy.


Assuntos
Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , Ciclopentanos/química , Polímeros/farmacologia , Rutênio/química , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Microscopia Eletrônica de Transmissão , Estrutura Molecular , Polímeros/síntese química , Polímeros/química , Relação Estrutura-Atividade
13.
Toxicol Appl Pharmacol ; 362: 136-149, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30391378

RESUMO

Multidrug resistance (MDR) in cancer cells is often associated with overexpression of ATP-binding cassette (ABC) transporters, including P-glycoprotein (P-gp/ABCB1), multidrug resistance-associated protein 1 (MRP1/ABCC1) and breast cancer resistance protein (BCRP/ABCG2). Modulators of these transporters might be helpful in overcoming MDR. Moreover, exploiting collateral sensitivity (CS) could be another approach for efficient treatment of cancer. Twelve novel 5-oxo-hexahydroquinoline derivatives bearing different aromatic substitutions at C4, while having 2-pyridyl alkyl carboxylate substituents at the C3 were synthesized and evaluated for MDR reversal activity by flow cytometric determination of rhodamine 123, calcein and mitoxantrone accumulations in P-gp, MRP1 and BCRP-overexpressing cell lines, respectively. Furthermore, to confirm the P-gp inhibitory activity, the effect of compounds on the reduction of doxorubicin's IC50 of drug-resistant human uterine sarcoma cell line, MES-SA/DX5, was evaluated. Compounds D6, D5 and D3 (bearing 3-chlorophenyl, 2,3-dichlorophenyl and 4-chlorophenyl substituents at C4 position of 5-oxo-hexahydroquinoline core) were the most potent P-gp, MRP1 and BCRP inhibitors, respectively, causing significant MDR reversal at concentrations of 1-10 µM. Additionally, D4 (containing 3-flourophenyl) was the most effective MRP1-dependent CS inducing agent. Overall, chlorine containing compounds D6, C4 and D3 were capable of significant inhibition of all 3 important efflux pumps in cancer cells. Moreover, D6 also induced CS triggered by reducing glutathione efflux. In conclusion, some of the 5-oxo-hexahydroquinoline derivatives are effective efflux pump inhibitors capable of simultaneously blocking 3 important ABC transporters involved in MDR, and represent promising agents to overcome MDR in cancer cells.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/fisiologia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/fisiologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/fisiologia , Proteínas de Neoplasias/fisiologia , Quinolinas/farmacologia , Animais , Antibióticos Antineoplásicos/farmacologia , Linhagem Celular , Cricetinae , Doxorrubicina/farmacologia , Glutationa/metabolismo , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo
14.
Eur J Med Chem ; 163: 853-863, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30579125

RESUMO

Two new ruthenium complexes, [Ru(η5-Cp)(PPh3)(2,2'-bipy-4,4'-R)]+ with R = -CH2OH (Ru1) or dibiotin ester (Ru2) were synthesized and fully characterized. Both compounds were tested against two types of breast cancer cells (MCF7 and MDA-MB-231), showing better cytotoxicity than cisplatin in the same experimental conditions. Since multidrug resistance (MDR) is one of the main problems in cancer chemotherapy, we have assessed the potential of these compounds to overcome resistance to treatments. Ru2 showed exceptional selectivity as P-gp inhibitor, while Ru1 is possibly a substrate. In vivo studies in zebrafish showed that Ru2 is well tolerated up to 1.17 mg/L, presenting a LC50 of 5.73 mg/L at 5 days post fertilization.


Assuntos
2,2'-Dipiridil/química , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Biotina/química , Complexos de Coordenação/farmacologia , Rutênio/química , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Complexos de Coordenação/química , Resistência a Múltiplos Medicamentos , Humanos , Ligantes , Peixe-Zebra
15.
Cancers (Basel) ; 10(11)2018 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-30453567

RESUMO

Accumulating evidence supports the remarkable presence at the membrane surface of cancer cells of proteins, which are normally expressed in the intracellular compartment. Although these proteins, referred to as externalized proteins, represent a highly promising source of accessible and druggable targets for cancer therapy, the mechanisms via which they impact cancer biology remain largely unexplored. The aim of this study was to expose an externalized form of cytokeratin 8 (eK8) as a key player of colorectal tumorigenesis and characterize its mode of action. To achieve this, we generated a unique antagonist monoclonal antibody (D-A10 MAb) targeting an eight-amino-acid-long domain of eK8, which enabled us to ascertain the pro-tumoral activity of eK8 in both KRAS-mutant and wild-type colorectal cancers (CRC). We showed that this pro-tumoral activity involves a bidirectional eK8-dependent control of caspase-mediated apoptosis in vivo and of the plasminogen-induced invasion process in cellulo. Furthermore, we demonstrated that eK8 is anchored at the plasma membrane supporting this dual function. We, therefore, identified eK8 as an innovative therapeutic target in CRC and provided a unique MAb targeting eK8 that displays anti-neoplastic activities that could be useful to treat CRC, including those harboring KRAS mutations.

16.
Future Med Chem ; 10(11): 1349-1360, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29848100

RESUMO

AIM: Cisplatin resistance in ovarian cancer remains a complex problem as tumors frequently develop resistance against drugs, a mechanism sometimes mediated by ATP-Binding Cassette transporters. Our goal was to find compounds restricting their inhibition capacity to the cisplatin efflux mediated by ABCC2 pump, among previously identified inhibitors, derived from the 2- indolylmethylenebenzofuranones. Methodology & results: An original method setup allows direct quantitation of platinum by employing cyTOF mass cytometry. Among tested derivatives, some led to a full platinum accumulation and efficiently resensitized cisplatin-resistant A2780 cells to cisplatin while preserving most of the calcein efflux activity. CONCLUSION: CyTOF is therefore a powerful and promising method to quantify cisplatin accumulation that may be used in the clinical setting to improve and personalize cancer treatment.


Assuntos
Benzofuranos/farmacologia , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Neoplasias Ovarianas/patologia , Antineoplásicos/farmacologia , Benzofuranos/síntese química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Feminino , Fluoresceínas/metabolismo , Humanos , Proteína 2 Associada à Farmacorresistência Múltipla , Neoplasias Ovarianas/tratamento farmacológico
17.
Eur J Med Chem ; 155: 61-76, 2018 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-29859505

RESUMO

The human enzyme 17ß-hydroxysteroid dehydrogenase 14 (17ß-HSD14) oxidizes the hydroxyl group at position 17 of estradiol and 5-androstenediol using NAD+ as cofactor. However, the physiological role of the enzyme remains unclear. We recently described the first class of nonsteroidal inhibitors for this enzyme with compound 1 showing a high 17ß-HSD14 inhibitory activity. Its crystal structure was used as starting point for a structure-based optimization in this study. The goal was to develop a promising chemical probe to further investigate the enzyme. The newly designed compounds revealed mostly very high inhibition of the enzyme and for seven of them the crystal structures of the corresponding inhibitor-enzyme complexes were resolved. The crystal structures disclosed that a small change in the substitution pattern of the compounds resulted in an alternative binding mode for one inhibitor. The profiling of a set of the most potent inhibitors identified 13 (Ki = 9 nM) with a good selectivity profile toward three 17ß-HSDs and the estrogen receptor alpha. This inhibitor displayed no cytotoxicity, good solubility, and auspicious predicted bioavailability. Overall, 13 is a highly interesting 17ß-HSD14 inhibitor, which might be used as chemical probe for further investigation of the target enzyme.


Assuntos
17-Hidroxiesteroide Desidrogenases/antagonistas & inibidores , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Piridinas/farmacologia , 17-Hidroxiesteroide Desidrogenases/metabolismo , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Modelos Moleculares , Estrutura Molecular , Piridinas/síntese química , Piridinas/química , Relação Estrutura-Atividade
18.
Inorg Chem ; 57(8): 4629-4639, 2018 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-29611696

RESUMO

New ruthenium methyl-cyclopentadienyl compounds bearing bipyridine derivatives with the general formula [Ru(η5-MeCp)(PPh3)(4,4'-R-2,2'-bpy)]+ (Ru1, R = H; Ru2, R = CH3; and Ru3, R = CH2OH) have been synthesized and characterized by spectroscopic and analytical techniques. Ru1 crystallized in the monoclinic P21/ c, Ru2 in the triclinic P1̅, and Ru3 in the monoclinic P21/ n space group. In all molecular structures, the ruthenium center adopts a "piano stool" distribution. Density functional theory calculations were performed for all complexes, and the results support spectroscopic data. Ru1 and Ru3 were poor substrates of the main multidrug resistance human pumps, ABCB1, ABCG2, ABCC1, and ABCC2, while Ru2 displayed inhibitory properties of ABCC1 and ABCC2 pumps. Importantly, all compounds displayed a very high cytotoxic profile for ovarian cancer cells (sensitive and resistant) that was much more pronounced than that observed with cisplatin, making them very promising anticancer agents.


Assuntos
2,2'-Dipiridil/análogos & derivados , 2,2'-Dipiridil/farmacologia , Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , 2,2'-Dipiridil/síntese química , 2,2'-Dipiridil/química , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Cisplatino/farmacologia , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Estabilidade de Medicamentos , Humanos , Ligantes , Modelos Químicos , Proteína 2 Associada à Farmacorresistência Múltipla , Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Teoria Quântica
19.
Future Med Chem ; 10(7): 725-741, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29570361

RESUMO

AIM: Naringenin (1), isolated in large amount from the aerial parts of Euphorbia pedroi, was chemically derivatized to yield 18 imine derivatives (2-19) and three alkylated derivatives through a Mannich-type reaction (20-22) that were tested as multidrug resistance (MDR) reversers in cancer cells. Results/methodology: While hydrazone (2-4) and azine (5-13) derivatives showed an improvement in their MDR reversal activities against the breast cancer resistance protein, carbohydrazides 14-19 revealed an enhancement in MDR reversal activity toward the multidrug resistance protein 1. CONCLUSION: The observed activities, together with pharmacophoric analysis and molecular docking studies, identified the spatial orientation of the substituents as a key structural feature toward a possible mechanism by which naringenin derivatives may reverse MDR in cancer.


Assuntos
Transportadores de Cassetes de Ligação de ATP/efeitos dos fármacos , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Flavanonas/farmacologia , Nitrogênio/análise , Transportadores de Cassetes de Ligação de ATP/química , Animais , Neoplasias da Mama/patologia , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida , Cromatografia em Camada Fina , Cricetinae , Euphorbia/química , Feminino , Flavanonas/química , Flavanonas/isolamento & purificação , Humanos , Espectrometria de Massas , Camundongos , Simulação de Acoplamento Molecular , Componentes Aéreos da Planta/química , Espectroscopia de Prótons por Ressonância Magnética , Relação Estrutura-Atividade
20.
Biochim Biophys Acta Biomembr ; 1860(5): 965-972, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29410026

RESUMO

Candida drug resistance 1 (Cdr1), a PDR subfamily ABC transporter mediates efflux of xenobiotics in Candida albicans. It is one of the prime factors contributing to multidrug resistance in the fungal pathogen. One hallmark of this transporter is its asymmetric nature, characterized by peculiar alterations in its nucleotide binding domains. As a consequence, there exists only one canonical ATP-binding site while the other is atypical. Here, we report suppressor analysis on the drug-susceptible transmembrane domain mutant V532D that identified the suppressor mutation W1038S, close to the D-loop of the non-catalytic ATP-binding site. Introduction of the W1038S mutation in the background of V532D mutant conferred resistance for most of the substrates to the latter. Such restoration is accompanied by a severe reduction of ATPase activity, of about 85%, while that of the V532D mutant is half-reduced. Conversely, alanine substitution of the highly conserved aspartate D1033A in that D-loop rendered cells selectively hyper-susceptible to miconazole without an impact on steady-state ATPase activity, suggesting altogether that ATP hydrolysis may not hold the key to restoration mechanism. Analysis of the ABCG5/ABCG8-based 3D-model of Cdr1p suggested that the W1038S substitution leads to the loss of hydrophobic interactions and H-bond with residues of the neighbor NBD1, in the non-catalytic ATP-binding site area. The compensatory effect within TMDs accounting for transport restoration in the V532D-W1038S variant may, therefore, be mainly due to an increase in NBDs mobility at the non-catalytic interface.


Assuntos
Proteínas Fúngicas , Proteínas de Membrana Transportadoras , Nucleotídeos/metabolismo , Domínios e Motivos de Interação entre Proteínas , Triptofano/metabolismo , Trifosfato de Adenosina/metabolismo , Substituição de Aminoácidos , Sítios de Ligação/genética , Candida albicans/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Modelos Moleculares , Mutagênese Sítio-Dirigida , Domínios e Motivos de Interação entre Proteínas/genética , Estrutura Secundária de Proteína/genética , Triptofano/química , Triptofano/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA