Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neuron ; 111(10): 1591-1608.e4, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-36893755

RESUMO

Post-hemorrhagic hydrocephalus (PHH) refers to a life-threatening accumulation of cerebrospinal fluid (CSF) that occurs following intraventricular hemorrhage (IVH). An incomplete understanding of this variably progressive condition has hampered the development of new therapies beyond serial neurosurgical interventions. Here, we show a key role for the bidirectional Na-K-Cl cotransporter, NKCC1, in the choroid plexus (ChP) to mitigate PHH. Mimicking IVH with intraventricular blood led to increased CSF [K+] and triggered cytosolic calcium activity in ChP epithelial cells, which was followed by NKCC1 activation. ChP-targeted adeno-associated viral (AAV)-NKCC1 prevented blood-induced ventriculomegaly and led to persistently increased CSF clearance capacity. These data demonstrate that intraventricular blood triggered a trans-choroidal, NKCC1-dependent CSF clearance mechanism. Inactive, phosphodeficient AAV-NKCC1-NT51 failed to mitigate ventriculomegaly. Excessive CSF [K+] fluctuations correlated with permanent shunting outcome in humans following hemorrhagic stroke, suggesting targeted gene therapy as a potential treatment to mitigate intracranial fluid accumulation following hemorrhage.


Assuntos
Plexo Corióideo , Hidrocefalia , Humanos , Hidrocefalia/terapia , Hemorragia Cerebral/complicações , Hemorragia Cerebral/terapia
2.
Cell Death Differ ; 29(8): 1596-1610, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35322202

RESUMO

Multiciliated cells (MCCs) in the brain reside in the ependyma and the choroid plexus (CP) epithelia. The CP secretes cerebrospinal fluid that circulates within the ventricular system, driven by ependymal cilia movement. Tumors of the CP are rare primary brain neoplasms mostly found in children. CP tumors exist in three forms: CP papilloma (CPP), atypical CPP, and CP carcinoma (CPC). Though CPP and atypical CPP are generally benign and can be resolved by surgery, CPC is a particularly aggressive and little understood cancer with a poor survival rate and a tendency for recurrence and metastasis. In contrast to MCCs in the CP epithelia, CPCs in humans are characterized by solitary cilia, frequent TP53 mutations, and disturbances to multiciliogenesis program directed by the GMNC-MCIDAS transcriptional network. GMNC and MCIDAS are early transcriptional regulators of MCC fate differentiation in diverse tissues. Consistently, components of the GMNC-MCIDAS transcriptional program are expressed during CP development and required for multiciliation in the CP, while CPC driven by deletion of Trp53 and Rb1 in mice exhibits multiciliation defects consequent to deficiencies in the GMNC-MCIDAS program. Previous studies revealed that abnormal NOTCH pathway activation leads to CPP. Here we show that combined defects in NOTCH and Sonic Hedgehog signaling in mice generates tumors that are similar to CPC in humans. NOTCH-driven CP tumors are monociliated, and disruption of the NOTCH complex restores multiciliation and decreases tumor growth. NOTCH suppresses multiciliation in tumor cells by inhibiting the expression of GMNC and MCIDAS, while Gmnc-Mcidas overexpression rescues multiciliation defects and suppresses tumor cell proliferation. Taken together, these findings indicate that reactivation of the GMNC-MCIDAS multiciliogenesis program is critical for inhibiting tumorigenesis in the CP, and it may have therapeutic implications for the treatment of CPC.


Assuntos
Carcinoma , Proteínas de Ciclo Celular , Neoplasias do Plexo Corióideo , Proteínas Nucleares , Animais , Carcinoma/genética , Proteínas de Ciclo Celular/genética , Neoplasias do Plexo Corióideo/genética , Neoplasias do Plexo Corióideo/patologia , Proteínas Hedgehog/genética , Humanos , Camundongos , Proteínas Nucleares/genética
3.
Development ; 148(10)2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-34032267

RESUMO

The choroid plexus (ChP) produces cerebrospinal fluid and forms an essential brain barrier. ChP tissues form in each brain ventricle, each one adopting a distinct shape, but remarkably little is known about the mechanisms underlying ChP development. Here, we show that epithelial WNT5A is crucial for determining fourth ventricle (4V) ChP morphogenesis and size in mouse. Systemic Wnt5a knockout, or forced Wnt5a overexpression beginning at embryonic day 10.5, profoundly reduced ChP size and development. However, Wnt5a expression was enriched in Foxj1-positive epithelial cells of 4V ChP plexus, and its conditional deletion in these cells affected the branched, villous morphology of the 4V ChP. We found that WNT5A was enriched in epithelial cells localized to the distal tips of 4V ChP villi, where WNT5A acted locally to activate non-canonical WNT signaling via ROR1 and ROR2 receptors. During 4V ChP development, MEIS1 bound to the proximal Wnt5a promoter, and gain- and loss-of-function approaches demonstrated that MEIS1 regulated Wnt5a expression. Collectively, our findings demonstrate a dual function of WNT5A in ChP development and identify MEIS transcription factors as upstream regulators of Wnt5a in the 4V ChP epithelium.


Assuntos
Plexo Corióideo/embriologia , Epitélio/metabolismo , Quarto Ventrículo/embriologia , Proteína Meis1/metabolismo , Proteína Wnt-5a/metabolismo , Animais , Encéfalo/embriologia , Sistemas CRISPR-Cas/genética , Linhagem Celular , Células Epiteliais/metabolismo , Feminino , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Regiões Promotoras Genéticas/genética , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Transdução de Sinais/fisiologia , Proteína Wnt-5a/genética
4.
Nat Commun ; 12(1): 447, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33469018

RESUMO

Cerebrospinal fluid (CSF) provides vital support for the brain. Abnormal CSF accumulation, such as hydrocephalus, can negatively affect perinatal neurodevelopment. The mechanisms regulating CSF clearance during the postnatal critical period are unclear. Here, we show that CSF K+, accompanied by water, is cleared through the choroid plexus (ChP) during mouse early postnatal development. We report that, at this developmental stage, the ChP showed increased ATP production and increased expression of ATP-dependent K+ transporters, particularly the Na+, K+, Cl-, and water cotransporter NKCC1. Overexpression of NKCC1 in the ChP resulted in increased CSF K+ clearance, increased cerebral compliance, and reduced circulating CSF in the brain without changes in intracranial pressure in mice. Moreover, ChP-specific NKCC1 overexpression in an obstructive hydrocephalus mouse model resulted in reduced ventriculomegaly. Collectively, our results implicate NKCC1 in regulating CSF K+ clearance through the ChP in the critical period during postnatal neurodevelopment in mice.


Assuntos
Líquido Cefalorraquidiano/metabolismo , Plexo Corióideo/patologia , Hidrocefalia/patologia , Membro 2 da Família 12 de Carreador de Soluto/metabolismo , Animais , Animais Recém-Nascidos , Plexo Corióideo/diagnóstico por imagem , Plexo Corióideo/crescimento & desenvolvimento , Plexo Corióideo/metabolismo , Dependovirus/genética , Modelos Animais de Doenças , Embrião de Mamíferos , Feminino , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Humanos , Hidrocefalia/congênito , Hidrocefalia/diagnóstico , Hidrocefalia/fisiopatologia , Injeções Intraventriculares , Pressão Intracraniana/fisiologia , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Transgênicos , Membro 2 da Família 12 de Carreador de Soluto/genética
5.
Am J Pathol ; 188(6): 1334-1344, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29545198

RESUMO

Choroid plexus tumors and ciliary body medulloepithelioma are predominantly pediatric neoplasms. Progress in understanding the pathogenesis of these tumors has been hindered by their rarity and lack of models that faithfully recapitulate the disease. Here, we find that endogenous Myc proto-oncogene protein is down-regulated in the forebrain neuroepithelium, whose neural plate border domains give rise to the anterior choroid plexus and ciliary body. To uncover the consequences of persistent Myc expression, MYC expression was forced in multipotent neural precursors (nestin-Cre:Myc), which produced fully penetrant models of choroid plexus carcinoma and ciliary body medulloepithelioma. Nestin-mediated MYC expression in the epithelial cells of choroid plexus leads to the regionalized formation of choroid plexus carcinoma in the posterior domain of the lateral ventricle choroid plexus and the fourth ventricle choroid plexus that is accompanied by loss of multiple cilia, up-regulation of protein biosynthetic machinery, and hydrocephalus. Parallel MYC expression in the ciliary body leads also to up-regulation of protein biosynthetic machinery. Additionally, Myc expression in human choroid plexus tumors increases with aggressiveness of disease. Collectively, our findings expose a select vulnerability of the neuroepithelial lineage to postnatal tumorigenesis and provide a new mouse model for investigating the pathogenesis of these rare pediatric neoplasms.


Assuntos
Carcinogênese/patologia , Neoplasias do Plexo Corióideo/patologia , Corpo Ciliar/patologia , Modelos Animais de Doenças , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Adolescente , Adulto , Animais , Carcinogênese/genética , Carcinogênese/metabolismo , Criança , Pré-Escolar , Neoplasias do Plexo Corióideo/genética , Neoplasias do Plexo Corióideo/metabolismo , Corpo Ciliar/metabolismo , Feminino , Humanos , Lactente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/patologia , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-myc/genética , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA