Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Cancer Ther ; 23(9): 1273-1281, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-38710101

RESUMO

Oncolytic virotherapy or immunovirotherapy is a strategy that utilizes viruses to selectively infect and kill tumor cells while also stimulating an immune response against the tumor. Early clinical trials in both pediatric and adult patients using oncolytic herpes simplex viruses (oHSV) have demonstrated safety and promising efficacy; however, combinatorial strategies designed to enhance oncolysis while also promoting durable T-cell responses for sustaining disease remission are likely required. We hypothesized that combining the direct tumor cell killing and innate immune stimulation by oHSV with a vaccine that promotes T cell-mediated immunity may lead to more durable tumor regression. To this end, we investigated the preclinical efficacy and potential synergy of combining oHSV with a self-assembling nanoparticle vaccine codelivering peptide antigens and Toll-like receptor 7 and 8 agonists (referred to as SNAPvax),which induces robust tumor-specific T-cell immunity. We then assessed how timing of the treatments (i.e., vaccine before or after oHSV) impacts T-cell responses, viral replication, and preclinical efficacy. The sequence of treatments was critical, as survival was significantly enhanced when the SNAPvax vaccine was given prior to oHSV. Increased clinical efficacy was associated with reduced tumor volume and increases in virus replication and tumor antigen-specific CD8+ T cells. These findings substantiate the criticality of combination immunotherapy timing and provide preclinical support for combining SNAPvax with oHSV as a promising treatment approach for both pediatric and adult tumors.


Assuntos
Vacinas Anticâncer , Imunoterapia , Terapia Viral Oncolítica , Terapia Viral Oncolítica/métodos , Animais , Camundongos , Humanos , Imunoterapia/métodos , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/administração & dosagem , Terapia Combinada , Simplexvirus , Vírus Oncolíticos/imunologia , Vírus Oncolíticos/genética , Linhagem Celular Tumoral , Feminino , Ensaios Antitumorais Modelo de Xenoenxerto
2.
J Immunother Cancer ; 8(2)2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32958686

RESUMO

BACKGROUND: Immunotherapies, such as immune checkpoint inhibitors and adoptive cell therapies, have revolutionized cancer treatment and resulted in complete and durable responses in some patients. Unfortunately, most immunotherapy treated patients still fail to respond. Absence of T cell infiltration to the tumor site is one of the major obstacles limiting immunotherapy efficacy against solid tumors. Thus, the development of strategies that enhance T cell infiltration and broaden the antitumor efficacy of immunotherapies is greatly needed. METHODS: We used mouse tumor models, genetically deficient mice and vascular endothelial cells (VECs) to study the requirements for T cell infiltration into tumors. RESULTS: A specific formulation of poly-IC, containing poly-lysine and carboxymethylcellulose (PICLC) facilitated the traffic and infiltration of effector CD8 T cells into the tumors that reduced tumor growth. Surprisingly, intratumoral injection of PICLC was significantly less effective in inducing tumor T cell infiltration and controlling growth of tumors as compared with systemic (intravenous or intramuscular) administration. Systemically administered PICLC, but not poly-IC stimulated tumor VECs via the double-stranded RNA cytoplasmic sensor MDA5, resulting in enhanced adhesion molecule expression and the production of type I interferon (IFN-I) and T cell recruiting chemokines. Expression of IFNαß receptor in VECs was necessary to obtain the antitumor effects by PICLC and IFN-I was found to directly stimulate the secretion of T cell recruiting chemokines by VECs indicating that this cytokine-chemokine regulatory axis is crucial for recruiting effector T cells into the tumor parenchyma. Unexpectedly, these effects of PICLC were mostly observed in tumors and not in normal tissues. CONCLUSIONS: These findings have strong implications for the improvement of all types of T cell-based immunotherapies for solid cancers. We predict that systemic administration of PICLC will improve immune checkpoint inhibitor therapy, adoptive cell therapies and therapeutic cancer vaccines.


Assuntos
Imunoterapia/métodos , Poli I-C/metabolismo , Linfócitos T/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Humanos , Camundongos
3.
Cancer Immunol Res ; 6(5): 617-627, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29483127

RESUMO

Peptide vaccines can be a successful and cost-effective way of generating T-cell responses against defined tumor antigens, especially when combined with immune adjuvants such as poly-IC. However, strong immune adjuvants can induce a collateral increase in numbers of irrelevant, nonspecific T cells, which limits the effectiveness of the peptide vaccines. Here, we report that providing prolonged IL2 signaling in the form of either IL2/anti-IL2 complexes or pegylated IL2 overcomes the competitive suppressive effect of irrelevant T cells, allowing the preferential expansion of antigen-specific T cells. In addition to increasing the number of tumor-reactive T cells, sustained IL2 enhanced the ability of T cells to resist PD-1-induced negative signals, increasing the therapeutic effectiveness of the vaccines against established tumors. This vaccination strategy using peptides and sustained IL2 could be taken into the clinic for the treatment of cancer. Cancer Immunol Res; 6(5); 617-27. ©2018 AACR.


Assuntos
Vacinas Anticâncer/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Imunoterapia Adotiva/métodos , Interleucina-2/administração & dosagem , Neoplasias/terapia , Linfócitos T/efeitos dos fármacos , Adjuvantes Imunológicos/administração & dosagem , Animais , Antígenos de Neoplasias/imunologia , Terapia Combinada , Citotoxicidade Imunológica/efeitos dos fármacos , Esquema de Medicação , Sinergismo Farmacológico , Feminino , Interleucina-2/farmacologia , Ativação Linfocitária/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neoplasias/imunologia , Neoplasias/patologia , Poli I-C/administração & dosagem , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia , Ratos , Transdução de Sinais/efeitos dos fármacos , Linfócitos T/fisiologia , Células Tumorais Cultivadas , Vacinas de Subunidades Antigênicas/uso terapêutico
4.
Cancer Immunol Immunother ; 66(2): 203-213, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27052572

RESUMO

The design of efficacious and cost-effective therapeutic vaccines against cancer remains both a research priority and a challenge. For more than a decade, our laboratory has been involved in the development of synthetic peptide-based anti-cancer therapeutic vaccines. We first dedicated our efforts in the identification and validation of peptide epitopes for both CD8 and CD4 T cells from tumor-associated antigens (TAAs). Because of suboptimal immune responses and lack of therapeutic benefit of peptide vaccines containing these epitopes, we have focused our recent efforts in optimizing peptide vaccinations in mouse tumor models using numerous TAA epitopes. In this focused research review, we describe how after taking lessons from the immune system's way of dealing with acute viral infections, we have designed peptide vaccination strategies capable of generating very high numbers of therapeutically effective CD8 T cells. We also discuss some of the remaining challenges to translate these findings into the clinical setting.


Assuntos
Vacinas Anticâncer/imunologia , Melanoma Experimental/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Viroses/imunologia , Animais , Modelos Animais de Doenças , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA