Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Divers ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39012564

RESUMO

Prolactinoma was the most common functional pituitary neuroendocrine tumor tissue type, which was caused by excessive proliferation of pituitary prolactin (PRL) cells. Drug therapy of dopamine receptor agonists was generally considered as the prior treatment for prolactinoma patients. However, there were still prolactinoma patients who were resistant to dopamine agonists. Studies have been reported that paeoniflorin can inhibit the secretion of PRL in prolactinoma cells lacking dopamine D2 receptor (D2R) expression, and paeoniflorin can be metabolized into albiflorin by intestinal flora in rats. The effect of albiflorin on prolactinoma has not been reported yet. In this study, network pharmacology was used to analyze the mechanism of paeoniflorin and its metabolite albiflorin as multi-target therapy for prolactinoma, and the experimental verification was carried out. In order to clarify the complex relationship among paeoniflorin, albiflorin and prolactinoma, we constructed a component-target-disease network, and further constructed interaction network, MMP9, EGFR, FGF2, FGFR1 and LGALS3 were screened as the core targets. Kyoto encyclopedia of genes and genomes (KEGG) analysis showed that paeoniflorin and albiflorin may be involved in various pathways in the treatment of prolactinoma, included relaxin signaling pathway and PI3K-Akt signaling pathway. Molecular docking analysis showed that paeoniflorin and albiflorin had good binding activity with MMP9. Western blotting results showed that paeoniflorin and albiflorin could significantly reduce the expression of MMP9, and ELISA results showed that paeoniflorin and albiflorin could significantly reduce the concentration of PRL in GH3 cells, and the reduce degree of albiflorin was stronger than paeoniflorin at 50 µM, which indicated that albiflorin might be a potential drug to treat prolactinoma, which can regulate prolactinoma through MMP9 and reduce the concentration of PRL. Our study provided a new therapeutic strategy for prolactinoma.

2.
Chin J Integr Med ; 30(4): 348-358, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38212499

RESUMO

OBJECTIVE: To investigate the anti-tumor effects of Pien Tze Huang (PZH) in mouse models of B16-F10 melanoma, MC38 colorectal cancer, Hep1-6 hepatocellular carcinoma and chemically induced hepatocellular carcinoma model. METHODS: Various tumor models, including B16-F10, MC38 and Hep1-6 tumor hypodermic inoculation models, B16-F10 and Hep1-6 pulmonary metastasis models, Hep1-6 orthotopic implantation model, and chemically induced hepatocellular carcinoma model, were utilized to evaluate the anti-tumor function of PZH. Tumor growth was assessed by measuring tumor size and weight of solid tumors isolated from C57BL/6 mice. For cell proliferation and death of tumor cells in vitro, as well as T cell activation markers, cytokine production and immune checkpoints analysis, single-cell suspensions were prepared from mouse spleen, lymph nodes, and tumors after PZH treatment. RESULTS: PZH demonstrated significant therapeutic efficacy in inhibiting tumor growth (P<0.01). Treatment with PZH resulted in a reduction in tumor size in subcutaneous MC38 colon adenocarcinoma and B16-F10 melanoma models, and decreased pulmonary metastasis of B16-F10 melanoma and Hep1-6 hepatoma (P<0.01). However, in vitro experiments showed that PZH only had slight impact on the cell proliferation and survival of tumor cells (P>0.05). Nevertheless, PZH exhibited a remarkable ability to enhance T cell activation and the production of interferon gamma, tumor necrosis factor alpha, and interleukin 2 in CD4+ T cells in vitro (P<0.01 or P<0.05). Importantly, PZH substantially inhibited T cell exhaustion and boosted cytokine production by tumor-infiltrating CD8+ T cells (P<0.01 or P<0.05). CONCLUSION: This study has confirmed a novel immunomodulatory function of PZH in T cell-mediated anti-tumor immunity, indicating that PZH holds promise as a potential therapeutic agent for cancer treatment.


Assuntos
Adenocarcinoma , Carcinoma Hepatocelular , Neoplasias do Colo , Medicamentos de Ervas Chinesas , Melanoma , Camundongos , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Linfócitos T CD8-Positivos , Camundongos Endogâmicos C57BL , Citocinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA