Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Prostate Cancer Prostatic Dis ; 25(2): 229-237, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34127801

RESUMO

BACKGROUND: We previously developed an African-ancestry-specific polygenic hazard score (PHS46+African) that substantially improved prostate cancer risk stratification in men with African ancestry. The model consists of 46 SNPs identified in Europeans and 3 SNPs from 8q24 shown to improve model performance in Africans. Herein, we used principal component (PC) analysis to uncover subpopulations of men with African ancestry for whom the utility of PHS46+African may differ. MATERIALS AND METHODS: Genotypic data were obtained from the PRACTICAL consortium for 6253 men with African genetic ancestry. Genetic variation in a window spanning 3 African-specific 8q24 SNPs was estimated using 93 PCs. A Cox proportional hazards framework was used to identify the pair of PCs most strongly associated with the performance of PHS46+African. A calibration factor (CF) was formulated using Cox coefficients to quantify the extent to which the performance of PHS46+African varies with PC. RESULTS: CF of PHS46+African was strongly associated with the first and twentieth PCs. Predicted CF ranged from 0.41 to 2.94, suggesting that PHS46+African may be up to 7 times more beneficial to some African men than others. The explained relative risk for PHS46+African varied from 3.6% to 9.9% for individuals with low and high CF values, respectively. By cross-referencing our data set with 1000 Genomes, we identified significant associations between continental and calibration groupings. CONCLUSION: We identified PCs within 8q24 that were strongly associated with the performance of PHS46+African. Further research to improve the clinical utility of polygenic risk scores (or models) is needed to improve health outcomes for men of African ancestry.


Assuntos
População Negra , Cromossomos Humanos Par 8 , Predisposição Genética para Doença , Herança Multifatorial , Neoplasias da Próstata , População Negra/genética , Estudos de Casos e Controles , Cromossomos Humanos Par 8/genética , Humanos , Masculino , Polimorfismo de Nucleotídeo Único , Neoplasias da Próstata/etnologia , Neoplasias da Próstata/genética , Medição de Risco , População Branca/genética
2.
Transl Psychiatry ; 11(1): 466, 2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34497263

RESUMO

Increased risk-taking is a central component of bipolar disorder (BIP) and is implicated in schizophrenia (SCZ). Risky behaviours, including smoking and alcohol use, are overrepresented in both disorders and associated with poor health outcomes. Positive genetic correlations are reported but an improved understanding of the shared genetic architecture between risk phenotypes and psychiatric disorders may provide insights into underlying neurobiological mechanisms. We aimed to characterise the genetic overlap between risk phenotypes and SCZ, and BIP by estimating the total number of shared variants using the bivariate causal mixture model and identifying shared genomic loci using the conjunctional false discovery rate method. Summary statistics from genome wide association studies of SCZ, BIP, risk-taking and risky behaviours were acquired (n = 82,315-466,751). Genomic loci were functionally annotated using FUMA. Of 8.6-8.7 K variants predicted to influence BIP, 6.6 K and 7.4 K were predicted to influence risk-taking and risky behaviours, respectively. Similarly, of 10.2-10.3 K variants influencing SCZ, 9.6 and 8.8 K were predicted to influence risk-taking and risky behaviours, respectively. We identified 192 loci jointly associated with SCZ and risk phenotypes and 206 associated with BIP and risk phenotypes, of which 68 were common to both risk-taking and risky behaviours and 124 were novel to SCZ or BIP. Functional annotation implicated differential expression in multiple cortical and sub-cortical regions. In conclusion, we report extensive polygenic overlap between risk phenotypes and BIP and SCZ, identify specific loci contributing to this shared risk and highlight biologically plausible mechanisms that may underlie risk-taking in severe psychiatric disorders.


Assuntos
Transtorno Bipolar , Esquizofrenia , Transtorno Bipolar/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Polimorfismo de Nucleotídeo Único , Assunção de Riscos , Esquizofrenia/genética
3.
Prostate Cancer Prostatic Dis ; 24(2): 532-541, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33420416

RESUMO

BACKGROUND: Polygenic hazard scores (PHS) can identify individuals with increased risk of prostate cancer. We estimated the benefit of additional SNPs on performance of a previously validated PHS (PHS46). MATERIALS AND METHOD: 180 SNPs, shown to be previously associated with prostate cancer, were used to develop a PHS model in men with European ancestry. A machine-learning approach, LASSO-regularized Cox regression, was used to select SNPs and to estimate their coefficients in the training set (75,596 men). Performance of the resulting model was evaluated in the testing/validation set (6,411 men) with two metrics: (1) hazard ratios (HRs) and (2) positive predictive value (PPV) of prostate-specific antigen (PSA) testing. HRs were estimated between individuals with PHS in the top 5% to those in the middle 40% (HR95/50), top 20% to bottom 20% (HR80/20), and bottom 20% to middle 40% (HR20/50). PPV was calculated for the top 20% (PPV80) and top 5% (PPV95) of PHS as the fraction of individuals with elevated PSA that were diagnosed with clinically significant prostate cancer on biopsy. RESULTS: 166 SNPs had non-zero coefficients in the Cox model (PHS166). All HR metrics showed significant improvements for PHS166 compared to PHS46: HR95/50 increased from 3.72 to 5.09, HR80/20 increased from 6.12 to 9.45, and HR20/50 decreased from 0.41 to 0.34. By contrast, no significant differences were observed in PPV of PSA testing for clinically significant prostate cancer. CONCLUSIONS: Incorporating 120 additional SNPs (PHS166 vs PHS46) significantly improved HRs for prostate cancer, while PPV of PSA testing remained the same.


Assuntos
Biomarcadores Tumorais/genética , Modelos Estatísticos , Polimorfismo de Nucleotídeo Único , Neoplasias da Próstata/patologia , Medição de Risco/métodos , Adulto , Idoso , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Prognóstico , Neoplasias da Próstata/epidemiologia , Neoplasias da Próstata/genética , Fatores de Risco
4.
Int J Cancer ; 148(1): 99-105, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32930425

RESUMO

Polygenic hazard score (PHS) models are associated with age at diagnosis of prostate cancer. Our model developed in Europeans (PHS46) showed reduced performance in men with African genetic ancestry. We used a cross-validated search to identify single nucleotide polymorphisms (SNPs) that might improve performance in this population. Anonymized genotypic data were obtained from the PRACTICAL consortium for 6253 men with African genetic ancestry. Ten iterations of a 10-fold cross-validation search were conducted to select SNPs that would be included in the final PHS46+African model. The coefficients of PHS46+African were estimated in a Cox proportional hazards framework using age at diagnosis as the dependent variable and PHS46, and selected SNPs as predictors. The performance of PHS46 and PHS46+African was compared using the same cross-validated approach. Three SNPs (rs76229939, rs74421890 and rs5013678) were selected for inclusion in PHS46+African. All three SNPs are located on chromosome 8q24. PHS46+African showed substantial improvements in all performance metrics measured, including a 75% increase in the relative hazard of those in the upper 20% compared to the bottom 20% (2.47-4.34) and a 20% reduction in the relative hazard of those in the bottom 20% compared to the middle 40% (0.65-0.53). In conclusion, we identified three SNPs that substantially improved the association of PHS46 with age at diagnosis of prostate cancer in men with African genetic ancestry to levels comparable to Europeans.


Assuntos
População Negra/estatística & dados numéricos , Predisposição Genética para Doença , Modelos Genéticos , Herança Multifatorial , Neoplasias da Próstata/epidemiologia , Fatores Etários , População Negra/genética , Estudos de Casos e Controles , Técnicas de Genotipagem , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Modelos de Riscos Proporcionais , Neoplasias da Próstata/genética
5.
Eur J Hum Genet ; 28(10): 1467-1475, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32514134

RESUMO

We determined the effect of sample size on performance of polygenic hazard score (PHS) models in prostate cancer. Age and genotypes were obtained for 40,861 men from the PRACTICAL consortium. The dataset included 201,590 SNPs per subject, and was split into training and testing sets. Established-SNP models considered 65 SNPs that had been previously associated with prostate cancer. Discovery-SNP models used stepwise selection to identify new SNPs. The performance of each PHS model was calculated for random sizes of the training set. The performance of a representative Established-SNP model was estimated for random sizes of the testing set. Mean HR98/50 (hazard ratio of top 2% to average in test set) of the Established-SNP model increased from 1.73 [95% CI: 1.69-1.77] to 2.41 [2.40-2.43] when the number of training samples was increased from 1 thousand to 30 thousand. Corresponding HR98/50 of the Discovery-SNP model increased from 1.05 [0.93-1.18] to 2.19 [2.16-2.23]. HR98/50 of a representative Established-SNP model using testing set sample sizes of 0.6 thousand and 6 thousand observations were 1.78 [1.70-1.85] and 1.73 [1.71-1.76], respectively. We estimate that a study population of 20 thousand men is required to develop Discovery-SNP PHS models while 10 thousand men should be sufficient for Established-SNP models.


Assuntos
Estudo de Associação Genômica Ampla/métodos , Herança Multifatorial , Polimorfismo de Nucleotídeo Único , Neoplasias da Próstata/genética , Ensaios Clínicos como Assunto , Humanos , Masculino , Modelos Genéticos , Modelos de Riscos Proporcionais , Tamanho da Amostra
6.
JAMA Psychiatry ; 77(5): 503-512, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31913414

RESUMO

Importance: People with major psychiatric disorders (MPDs) have a 10- to 20-year shorter life span than the rest of the population, and this difference is mainly due to comorbid cardiovascular diseases. Genome-wide association studies have identified common variants involved in schizophrenia (SCZ), bipolar disorder (BIP), and major depression (MD) and body mass index (BMI), a key cardiometabolic risk factor. However, genetic variants jointly influencing MPD and BMI remain largely unknown. Objective: To assess the extent of the overlap between the genetic architectures of MPDs and BMI and identify genetic loci shared between them. Design, Setting, and Participants: Using a conditional false discovery rate statistical framework, independent genome-wide association study data on individuals with SCZ (n = 82 315), BIP (n = 51 710), MD (n = 480 359), and BMI (n = 795 640) were analyzed. The UK Biobank cohort (n = 29 740) was excluded from the MD data set to avoid sample overlap. Data were collected from August 2017 to May 2018, and analysis began July 2018. Main Outcomes and Measures: The primary outcomes were a list of genetic loci shared between BMI and MPDs and their functional pathways. Results: Genome-wide association study data from 1 380 284 participants were analyzed, and the genetic correlation between BMI and MPDs varied (SCZ: r for genetic = -0.11, P = 2.1 × 10-10; BIP: r for genetic = -0.06, P = .0103; MD: r for genetic = 0.12, P = 6.7 × 10-10). Overall, 63, 17, and 32 loci shared between BMI and SCZ, BIP, and MD, respectively, were analyzed at conjunctional false discovery rate less than 0.01. Of the shared loci, 34% (73 of 213) in SCZ, 52% (36 of 69) in BIP, and 57% (56 of 99) in MD had risk alleles associated with higher BMI (conjunctional false discovery rate <0.05), while the rest had opposite directions of associations. Functional analyses indicated that the overlapping loci are involved in several pathways including neurodevelopment, neurotransmitter signaling, and intracellular processes, and the loci with concordant and opposite association directions pointed mostly to different pathways. Conclusions and Relevance: In this genome-wide association study, extensive polygenic overlap between BMI and SCZ, BIP, and MD were found, and 111 shared genetic loci were identified, implicating novel functional mechanisms. There was mixture of association directions in SCZ and BMI, albeit with a preponderance of discordant ones.


Assuntos
Índice de Massa Corporal , Loci Gênicos/genética , Transtornos Mentais/genética , Transtorno Bipolar/genética , Transtorno Depressivo Maior/genética , Estudo de Associação Genômica Ampla , Humanos , Herança Multifatorial/genética , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética , Esquizofrenia/genética
7.
JAMA Neurol ; 75(7): 860-875, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29630712

RESUMO

Importance: Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder characterized by loss of upper and lower motor neurons. Although novel ALS genetic variants have been identified, the shared genetic risk between ALS and other neurodegenerative disorders remains poorly understood. Objectives: To examine whether there are common genetic variants that determine the risk for ALS and other neurodegenerative diseases and to identify their functional pathways. Design, Setting, and Participants: In this study conducted from December 1, 2016, to August 1, 2017, the genetic overlap between ALS, sporadic frontotemporal dementia (FTD), FTD with TDP-43 inclusions, Parkinson disease (PD), Alzheimer disease (AD), corticobasal degeneration (CBD), and progressive supranuclear palsy (PSP) were systematically investigated in 124 876 cases and controls. No participants were excluded from this study. Diagnoses were established using consensus criteria. Main Outcomes and Measures: The primary outcomes were a list of novel loci and their functional pathways in ALS, FTD, PSP, and ALS mouse models. Results: Among 124 876 cases and controls, genome-wide conjunction analyses of ALS, FTD, PD, AD, CBD, and PSP revealed significant genetic overlap between ALS and FTD at known ALS loci: rs13302855 and rs3849942 (nearest gene, C9orf72; P = .03 for rs13302855 and P = .005 for rs3849942) and rs4239633 (nearest gene, UNC13A; P = .03). Significant genetic overlap was also found between ALS and PSP at rs7224296, which tags the MAPT H1 haplotype (nearest gene, NSF; P = .045). Shared risk genes were enriched for pathways involving neuronal function and development. At a conditional FDR P < .05, 22 novel ALS polymorphisms were found, including rs538622 (nearest gene, ERGIC1; P = .03 for ALS and FTD), which modifies BNIP1 expression in human brains (35 of 137 females; mean age, 59 years; P = .001). BNIP1 expression was significantly reduced in spinal cord motor neurons from patients with ALS (4 controls: mean age, 60.5 years, mean [SE] value, 3984 [760.8] arbitrary units [AU]; 7 patients with ALS: mean age, 56 years, mean [SE] value, 1999 [274.1] AU; P = .02), in an ALS mouse model (mean [SE] value, 13.75 [0.09] AU for 2 SOD1 WT mice and 11.45 [0.03] AU for 2 SOD1 G93A mice; P = .002) and in brains of patients with PSP (80 controls: 39 females; mean age, 82 years, mean [SE] value, 6.8 [0.2] AU; 84 patients with PSP: 33 females, mean age 74 years, mean [SE] value, 6.8 [0.1] AU; ß = -0.19; P = .009) or FTD (11 controls: 4 females; mean age, 67 years; mean [SE] value, 6.74 [0.05] AU; 17 patients with FTD: 10 females; mean age, 69 years; mean [SE] value, 6.53 [0.04] AU; P = .005). Conclusions and Relevance: This study found novel genetic overlap between ALS and diseases of the FTD spectrum, that the MAPT H1 haplotype confers risk for ALS, and identified the mitophagy-associated, proapoptotic protein BNIP1 as an ALS risk gene. Together, these findings suggest that sporadic ALS may represent a selectively pleiotropic, polygenic disorder.


Assuntos
Doença de Alzheimer/genética , Esclerose Lateral Amiotrófica/genética , Demência Frontotemporal/genética , Doença de Parkinson/genética , Paralisia Supranuclear Progressiva/genética , Doenças dos Gânglios da Base/genética , Proteína C9orf72/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Proteínas do Tecido Nervoso/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Superóxido Dismutase-1/genética , Proteinopatias TDP-43/genética , Proteínas de Transporte Vesicular/genética , Proteínas tau/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA