Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 174: 116548, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38599064

RESUMO

BACKGROUND: Various heart diseases ultimately lead to chronic heart failure (CHF). In CHF, the inflammatory response is associated with pyroptosis, which is mediated by the NOD-like receptor protein 3 (NLRP3) inflammasome. Fu Xin decoction (FXD) is commonly used in clinical practice to treat CHF and improve inflammatory conditions. However, the specific pharmacological mechanisms of action for FXD in these processes have yet to be fully understood. PURPOSE: The objective of this study was to examine the protective mechanism of FXT against CHF, both in H9c2 cells and mice. METHOD: A CHF mouse model was established, and the effect of FXD was observed via gavage. Cardiac function was evaluated using echocardiography, while serum BNP and LDH levels were analyzed to assess the severity of CHF. Hematoxylin and eosin staining (H&E) and Masson staining were performed to evaluate myocardial pathological changes, and TdT-mediated dUTP Nick-End Labeling staining was used to detect DNA damage. Additionally, doxorubicin was utilized to induce myocardial cell injury in H9c2 cells, establishing a relevant model. CCK8 was used to observe cell viability and detect LDH levels in the cell supernatant. Subsequently, the expression of pyroptosis-related proteins was detected using immunohistochemistry, immunofluorescence, and western blotting. Finally, the pharmacological mechanism of FXD against CHF was further validated by treating H9c2 cells with an NLRP3 activator and inducing NLRP3 overexpression. RESULT: According to current research findings, echocardiography demonstrated a significant improvement of cardiac function by FXD, accompanied by reduced levels of BNP and LDH, indicating the amelioration of cardiac injury in CHF mice. FXD exhibited the ability to diminish serum CRP and MCP inflammatory markers in CHF mice. The results of HE and Masson staining analyses revealed a significant reduction in pathological damage of the heart tissue following FXD treatment. The CCK8 assay demonstrated the ability of FXD to enhance H9c2 cell viability, improve cell morphology, decrease LDH levels in the cell supernatant, and alleviate cell damage. Immunohistochemistry, Western blotting, and immunofluorescence staining substantiated the inhibitory effect of FXD on the NLRP3/caspase-1/GSDMD pyroptosis signaling pathway in both CHF and H9c2 cell injury models. Ultimately, the administration of the NLRP3 activator (Nigericin) and the overexpression of NLRP3 counteract the effects of FXD on cardiac protection and pyroptosis inhibition in vitro. CONCLUSION: FXD exhibits a cardioprotective effect, improving CHF and alleviating pyroptosis by inhibiting the NLRP3/caspase-1/GSDMD pathway.


Assuntos
Medicamentos de Ervas Chinesas , Insuficiência Cardíaca , Proteína 3 que Contém Domínio de Pirina da Família NLR , Piroptose , Animais , Camundongos , Caspase 1/efeitos dos fármacos , Caspase 1/metabolismo , Linhagem Celular , Doença Crônica , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/farmacologia , Gasderminas/efeitos dos fármacos , Gasderminas/metabolismo , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/metabolismo , Inflamassomos/metabolismo , Inflamassomos/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Piroptose/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
3.
Biomed Pharmacother ; 130: 110544, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32721630

RESUMO

Osteosarcoma is a highly invasive primary malignant bone tumor. PI3K/mTOR pathway plays a key role in tumor progression, and inhibition of PI3K/mTOR pathway represents a novel strategy in therapy of osteosarcoma. CCT128930 and VS5584 are both inhibitors of PI3K/mTOR, but the anticancer mechanism of CCT128930 or/and VS5584 against human osteosarcoma cells remains unclear. Herein, U2OS and MG63 human osteosarcoma cells were cultured, and the anticancer effects of CCT128930 alone and the combined effect of CCT128930 and VS5584 against human osteosarcoma cells were explored. The results showed that CCT128930 as PI3K/mTOR inhibitor effectively inhibited p-p70 and p-AKT expression and dose-dependently inhibited U2OS cells and MG63 human osteosarcoma cells growth. Further studies found that CCT128930 triggered significant G-1 phase arrest and apoptosis, as convinced by the dysfunction of p27, Cyclin B1, Cyclin D1 and Cdc2, and PARP cleavage and caspase-3 activation. Moreover, CCT128930 treatment obviously enhanced VS5584-induced growth inhibition and apoptosis in human osteosarcoma cells, followed by enhanced PARP cleavage and caspase-3 activation. Taken together, CCT128930 alone or combined treatment with CCT128930 and VS5584 both effectively inhibited human osteosarcoma cells growth by induction of G1-phase arrest and apoptosis through regulating PI3K/mTOR and MAPKs pathways.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias Ósseas/tratamento farmacológico , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Fase G1/efeitos dos fármacos , Morfolinas/farmacologia , Osteossarcoma/tratamento farmacológico , Purinas/farmacologia , Pirimidinas/farmacologia , Pirróis/farmacologia , Caspase 3/efeitos dos fármacos , Linhagem Celular Tumoral , Sinergismo Farmacológico , Humanos , Fosfatidilinositol 3-Quinases/efeitos dos fármacos , Serina-Treonina Quinases TOR/antagonistas & inibidores
4.
Curr Cancer Drug Targets ; 20(8): 616-623, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32286946

RESUMO

BACKGROUND: Activation of the PI3K/mTOR signaling pathway plays a key role in the progression of human osteosarcoma. Studies have confirmed that VS-5584 was a novel inhibitor of the PI3K/mTOR pathway, and displayed potential anticancer activity. OBJECTIVE: To explore the anticancer effect and underlying mechanism of VS-5584 against the growth of human osteosarcoma cells. METHODS: U2OS and MG-63 human osteosarcoma cells were cultured and the cytotoxicity, cell apoptosis in VS-5584-treated cells were explored by the CCK8 assay, flow cytometric analysis and western blot. Cell migration and tube formation were also employed to examine the anticancer potential. RESULTS: The results showed that VS-5584 treatment dose-dependently inhibited the growth of U2OS and MG-63 cells by induction of G1-phase arrest through regulating p21, p27, Cyclin B1 and Cdc2. Further investigation revealed that VS-5584 treatment effectively inhibited the PI3K/mTOR signaling pathway and triggered MAPK phosphorylation. Moreover, VS-5584 treatment dramatically suppressed cell migration and tube formation of HUVECs, followed by the down-regulation of HIF-1α and VEGF. CONCLUSION: Our findings validated that VS-5584 may be a promising anticancer agent with potential application in the chemotherapy and chemoprevention of human osteosarcoma.


Assuntos
Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Morfolinas/farmacologia , Osteossarcoma/tratamento farmacológico , Fosfatidilinositol 3-Quinase/química , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Purinas/farmacologia , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Proliferação de Células , Humanos , Osteossarcoma/genética , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Células Tumorais Cultivadas
5.
Mol Med Rep ; 19(6): 4753-4760, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31059085

RESUMO

Increased plasma levels of homocysteine (Hcy) can cause severe damage to vascular endothelial cells. Hcy­induced endothelial cell dysfunction contributes to the occurrence and development of human cerebrovascular diseases (CVDs). Our previous studies have revealed that astaxanthin (ATX) exhibits novel cardioprotective activity against Hcy­induced cardiotoxicity in vitro and in vivo. However, the protective effect and mechanism of ATX against Hcy­induced endothelial cell dysfunction requires further investigation. In the present study, treatment of human umbilical vascular endothelial cells (HUVECs) with Hcy inhibited the migration, invasive and tube formation potentials of these cells in a dose­dependent manner. Hcy treatment further induced a time­dependent increase in the production of reactive oxygen species (ROS), and downregulated the expression of vascular endothelial growth factor (VEGF), phosphorylated (p)­Tyr­VEGF receptor 2 (VEGFR2) and p­Tyr397­focal adhesion kinase (FAK). On the contrary, ATX pre­treatment significantly inhibited Hcy­induced cytotoxicity and increased HUVEC migration, invasion and tube formation following Hcy treatment. The mechanism of action may involve the effective inhibition of Hcy­induced ROS generation and the recovery of FAK phosphorylation. Collectively, our findings suggested that ATX could inhibit Hcy­induced endothelial dysfunction by suppressing Hcy­induced activation of the VEGF­VEGFR2­FAK signaling axis, which indicates the novel therapeutic potential of ATX in treating Hcy­mediated CVD.


Assuntos
Células Endoteliais/efeitos dos fármacos , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Homocisteína/efeitos adversos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Transtornos Cerebrovasculares/tratamento farmacológico , Transtornos Cerebrovasculares/metabolismo , Transtornos Cerebrovasculares/patologia , Relação Dose-Resposta a Droga , Regulação para Baixo , Células Endoteliais/patologia , Quinase 1 de Adesão Focal/metabolismo , Humanos , Fosforilação , Xantofilas/antagonistas & inibidores
6.
J Agric Food Chem ; 67(8): 2212-2219, 2019 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-30688446

RESUMO

Fucoxanthin, a natural carotenoid derived from algae, exhibits novel anticancer potential. However, fucoxanthin with high purity is hard to prepare, and the anticancer mechanism remains elusive. In the present study, fucoxanthin with high purity was prepared and purified from the marine microalgae Nitzschia sp. by silica-gel column chromatography (SGCC), and the underlying mechanism against human glioma cells was evaluated. The results showed that fucoxanthin time- and dose-dependently inhibited U251-human-glioma-cell growth by induction of apoptosis (64.4 ± 4.8, P < 0.01) accompanied by PARP cleavage and caspase activation (244 ± 14.2, P < 0.01). Mechanically, fucoxanthin time-dependently triggered reactive-oxygen-species (ROS)-mediated DNA damage (100 ± 7.38, P < 0.01), as evidenced by the phosphorylation activation of Ser1981-ATM, Ser428-ATR, Ser15-p53, and Ser139-histone. Moreover, fucoxanthin treatment also time-dependently caused dysfunction of MAPKs and PI3K-AKT pathways, as demonstrated by the phosphorylation activation of Thr183-JNK, Thr180-p38, and Thr202-ERK and the phosphorylation inactivation of Ser473-AKT. The addition of kinase inhibitors further confirmed the importance of MAPKs and PI3K-AKT pathways in fucoxanthin-induced cell-growth inhibition (32.5 ± 3.6, P < 0.01). However, ROS inhibition by the antioxidant glutathione (GSH) effectively inhibited fucoxanthin-induced DNA damage, attenuated the dysfunction of MAPKs and PI3K-AKT pathways, and eventually blocked fucoxanthin-induced cytotoxicity (54.3 ± 5.6, P < 0.05) and cell apoptosis (32.7 ± 2.5, P < 0.05), indicating that ROS production, an early apoptotic event, is involved in the fucoxanthin-mediated anticancer mechanism. Taken together, these results suggested that fucoxanthin induced U251-human-glioma-cell apoptosis by triggering ROS-mediated oxidative damage and dysfunction of MAPKs and PI3K-AKT pathways, which validated that fucoxanthin may be a candidate for potential applications in cancer chemotherapy and chemoprevention.


Assuntos
Apoptose/efeitos dos fármacos , Glioma/fisiopatologia , Microalgas/química , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Xantofilas/farmacologia , Linhagem Celular Tumoral , Glioma/tratamento farmacológico , Glioma/genética , Glioma/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Xantofilas/química , Xantofilas/isolamento & purificação
7.
Onco Targets Ther ; 11: 5429-5439, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30233204

RESUMO

BACKGROUND: Temozolomide (TMZ)-based chemotherapy represents an effective way for treating human glioma. However, its clinical application is limited because of its side effects and resistance to standard chemotherapy. Hence, the search for novel chemosensitizers to augment their anticancer efficiency has attracted much attention. Natural borneol (NB) has been identified as a potential chemosensitizer in treating human cancers. However, the synergistic effect and mechanism of NB and TMZ in human glioma have not been investigated yet. MATERIALS AND METHODS: U251 human glioma cells were cultured, and the cytotoxicity and apoptosis of NB and/or TMZ were examined by MTT assay, flow cytometric analysis and Western blot. Nude mice tumor model was also employed to evaluate the in vivo anticancer effect and mechanism. RESULTS: The results showed that the combined treatment of NB and TMZ more effectively inhibited human glioma growth via triggering mitochondria-mediated apoptosis in vitro, accompanied by the caspase activation. Combined treatment of NB and TMZ also caused mitochondrial dysfunction through disturbing Bcl-2 family expression. Further investigation revealed that NB enhanced TMZ-induced DNA damage through inducing reactive oxide species (ROS) overproduction. Moreover, glioma tumor xenograft growth in vivo was more effectively inhibited by the combined treatment with NB and TMZ through triggering apoptosis and anti-angiogenesis. CONCLUSION: Taken together, our findings validated that the strategy of using NB and TMZ could be a highly efficient way to achieve anticancer synergism.

8.
Front Physiol ; 9: 1907, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30687122

RESUMO

Accumulated evidences have verified that cancer chemotherapy may increase the risk of osteoporosis and severely affected the life quality. Osteoclasts hyperactivation was commonly accepted as the major pathogenesis of osteoporosis. However, the role of osteoblasts dysfunction in osteoporosis was little investigated. Our previous study has confirmed that selenium-containing protein from selenium-enriched Spirulina platensis (Se-SP) exhibited enhanced hepatoprotective potential through inhibiting oxidative damage. Herein, the protective effect of Se-SP against cisplatin-induced osteoblasts dysfunction in MC3T3-E1 mouse preosteoblast was investigated, and the underlying mechanism was evaluated. The results indicated that cisplatin dramatically decreased cell viability of preosteoblast by triggering mitochondria-mediated apoptosis pathway. Cisplatin treatment also caused mitochondrial dysfunction and reactive oxide species (ROS)-mediated oxidative damage. However, Se-SP pre-treatment effectively prevented MC3T3-E1 cells from cisplatin-induced mitochondrial dysfunction by balancing Bcl-2 family expression and regulating the opening of mitochondrial permeability transition pore (MPTP), attenuated cisplatin-induced oxidative damage through inhibiting the overproduction of ROS and superoxide anion, and eventually reversed cisplating-induced early and late apoptosis by inhibiting PARP cleavage and caspases activation. Our findings validated that Se-SP as a promising Se species could be a highly effective way in the chemoprevention and chemotherapy of oxidative damage-mediated bone diseases.

9.
Oncol Lett ; 14(3): 2940-2946, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28927047

RESUMO

MSK (mitogen- and stress-activated protein kinase) proteins are a family of mitogen-activated protein kinases. MSKs represent a novel type of pro-survival genes, potentially enhancing the phosphorylation of Bcl2-associated agonist of cell death. However, MSK's function and expression are poorly understood in the central nervous system. In the present study, a subarachnoid hemorrhage (SAH) model was established in SD rats and the expression of MSK1 in the brain subsequent to experimental SAH was investigated. In response to SAH, MSK1 mRNA and protein levels gradually declined, reaching the lowest point at 3 days, and increased thereafter. The expression of active caspase-3 was negatively correlated with MSK1 level. Colocalization and correlating changes in expression of MSK1 and active caspase-3 at neurons and astrocytes indicated that MSK1 downregulation may contribute to SAH-induced apoptosis, validating that MSK1 may be involved in the pathophysiology of the brain cortex subsequent to SAH.

10.
Sci Rep ; 7(1): 6465, 2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28743999

RESUMO

Thioredoxin reductase (TrxR) as a selenium (Se)-containing antioxidase plays key role in regulating intracellular redox status. Selenocystine (SeC) a natural available Se-containing amino acid showed novel anticancer potential through triggering oxidative damage-mediated apoptosis. However, whether TrxR-mediated oxidative damage was involved in SeC-induced apoptosis in human glioma cells has not been elucidated yet. Herein, SeC-induced human glioma cell apoptosis was detected in vitro, accompanied by PARP cleavage, caspases activation and DNA fragmentation. Mechanically, SeC caused mitochondrial dysfunction and imbalance of Bcl-2 family expression. SeC treatment also triggered ROS-mediated DNA damage and disturbed the MAPKs and AKT pathways. However, inhibition of ROS overproduction effectively attenuated SeC-induced oxidative damage and apoptosis, and normalized the expression of MAPKs and AKT pathways, indicating the significance of ROS in SeC-induced apoptosis. Importantly, U251 human glioma xenograft growth in nude mice was significantly inhibited in vivo. Further investigation revealed that SeC-induced oxidative damage was achieved by TrxR1-targeted inhibition in vitro and in vivo. Our findings validated the potential of SeC to inhibit human glioma growth by oxidative damage-mediated apoptosis through triggering TrxR1-targeted inhibition.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Glioma/tratamento farmacológico , Selenocisteína/farmacologia , Tiorredoxina Redutase 1/metabolismo , Animais , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , Glioma/metabolismo , Glioma/patologia , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tiorredoxina Redutase 1/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Cell Mol Neurobiol ; 37(2): 211-222, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26971524

RESUMO

Progressive accumulation of beta-amyloid (Aß) will form the senile plaques and cause oxidative damage and neuronal cell death, which was accepted as the major pathological mechanism to the Alzheimer's disease (AD). Hence, inhibition of Aß-induced oxidative damage and neuronal cell apoptosis by agents with potential antioxidant properties represents one of the most effective strategies in combating human AD. Curcumin (Cur) a natural extraction from curcuma longa has potential of pharmacological efficacy, including the benefit to antagonize Aß-induced neurotoxicity. However, the molecular mechanism remains elusive. The present study evaluated the protective effect of Cur against Aß-induced cytotoxicity and apoptosis in PC12 cells and investigated the underlying mechanism. The results showed that Cur markedly reduced Aß-induced cytotoxicity by inhibition of mitochondria-mediated apoptosis through regulation of Bcl-2 family. The PARP cleavage, caspases activation, and ROS-mediated DNA damage induced by Aß were all significantly blocked by Cur. Moreover, regulation of p38 MAPK and AKT pathways both contributed to this protective potency. Our findings suggested that Cur could effectively suppress Aß-induced cytotoxicity and apoptosis by inhibition of ROS-mediated oxidative damage and regulation of ERK pathway, which validated its therapeutic potential in chemoprevention and chemotherapy of Aß-induced neurotoxicity.


Assuntos
Peptídeos beta-Amiloides/toxicidade , Curcumina/farmacologia , Sistema de Sinalização das MAP Quinases/fisiologia , Fragmentos de Peptídeos/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Células PC12 , Ratos , Espécies Reativas de Oxigênio/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
12.
Neurochem Res ; 42(4): 997-1005, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27995497

RESUMO

Chemotherapy has always been one of the most effective ways in combating human glioma. However, the high metastatic potential and resistance toward standard chemotherapy severely hindered the chemotherapy outcomes. Hence, searching effective chemotherapy drugs and clarifying its mechanism are of great significance. Salinomycin an antibiotic shows novel anticancer potential against several human tumors, including human glioma, but its mechanism against human glioma cells has not been fully elucidated. In the present study, we demonstrated that salinomycin treatment time- and dose-dependently inhibited U251 and U87 cells growth. Mechanically, salinomycin-induced cell growth inhibition against human glioma was mainly achieved by induction of G1-phase arrest via triggering reactive oxide species (ROS)-mediated DNA damage, as convinced by the activation of histone, p53, p21 and p27. Furthermore, inhibition of ROS accumulation effectively attenuated salinomycin-induced DNA damage and G1 cell cycle arrest, and eventually reversed salinomycin-induced cytotoxicity. Importantly, salinomycin treatment also significantly inhibited the U251 tumor xenograft growth in vivo through triggering DNA damage-mediated cell cycle arrest with involvement of inhibiting cell proliferation and angiogenesis. The results above validated the potential of salinomycin-based chemotherapy against human glioma.


Assuntos
Dano ao DNA/efeitos dos fármacos , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Glioma/metabolismo , Piranos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Dano ao DNA/fisiologia , Relação Dose-Resposta a Droga , Pontos de Checagem da Fase G1 do Ciclo Celular/fisiologia , Glioma/tratamento farmacológico , Glioma/patologia , Humanos , Masculino , Camundongos , Camundongos Nus , Piranos/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
13.
Cell Biol Toxicol ; 32(4): 333-45, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27184666

RESUMO

Caudatin as one species of C-21 steroidal from Cynanchum bungei decne displays potential anticancer activity. However, the underlying mechanisms remain elusive. In the present study, the growth suppressive effect and mechanism of caudatin on human glioma U251 and U87 cells were evaluated in vitro. The results indicated that caudatin significantly inhibited U251 and U87 cell growth in both a time- and dose-dependent manner. Flow cytometry analysis revealed that caudatin-induced cell growth inhibition was achieved by induction of cell apoptosis, as convinced by the increase of Sub-G1 peak, PARP cleavage and activation of caspase-3, caspase-7 and caspase-9. Caudatin treatment also resulted in mitochondrial dysfunction which correlated with an imbalance of Bcl-2 family members. Further investigation revealed that caudatin triggered U251 cell apoptosis by inducing reactive oxygen species (ROS) generation through disturbing the redox homeostasis. Moreover, pretreatment of caspase inhibitors apparently weakens caudatin-induced cell killing, PARP cleavage and caspase activation and eventually reverses caudatin-mediated apoptosis. Importantly, caudatin significantly inhibited U251 tumour xenografts in vivo through induction of cell apoptosis involving the inhibition of cell proliferation and angiogenesis, which further validate its value in combating human glioma in vivo. Taken together, the results described above all suggest that caudatin inhibited human glioma cell growth by induction of caspase-dependent apoptosis with involvement of mitochondrial dysfunction and ROS generation.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Caspases/metabolismo , Glioma/tratamento farmacológico , Glicosídeos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Esteroides/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Inibidores de Caspase/farmacologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Glioma/metabolismo , Glioma/patologia , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo
14.
Neurochem Res ; 41(6): 1439-47, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26846141

RESUMO

Selenocysteine (SeC) a natural available selenoamino acid exhibits novel anticancer activities against human cancer cell lines. However, the growth inhibitory effect and mechanism of SeC in human glioma cells remain unclear. The present study reveals that SeC time- and dose-dependently inhibited U251 and U87 human glioma cells growth by induction of S-phase cell cycle arrest, followed by the marked decrease of cyclin A. SeC-induced S-phase arrest was achieved by inducing DNA damage through triggering generation of reactive oxygen species (ROS) and superoxide anion, with concomitant increase of TUNEL-positive cells and induction of p21waf1/Cip1 and p53. SeC treatment also caused the activation of p38MAPK, JNK and ERK, and inactivation of AKT. Four inhibitors of MAPKs and AKT pathways further confirmed their roles in SeC-induced S-phase arrest in human glioma cells. Our findings advance the understanding on the molecular mechanisms of SeC in human glioma management.


Assuntos
Pontos de Checagem do Ciclo Celular/fisiologia , Dano ao DNA/fisiologia , Glioma/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Proteína Oncogênica v-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Selenocisteína/farmacologia , Antineoplásicos/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Selênio/farmacologia
15.
Mol Neurobiol ; 53(1): 320-330, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25432887

RESUMO

Granulocyte colony-stimulating factor (G-CSF) is a hematopoietic growth factor with strong neuroprotective properties. However, it has limited capacity to cross the blood-brain barrier and thus potentially limiting its protective capacity. Recent studies demonstrated that intranasal drug administration is a promising way in delivering neuroprotective agents to the central nervous system. The current study therefore aimed at determining whether intranasal administration of G-CSF increases its delivery to the brain and its neuroprotective effect against ischemic brain injury. Transient focal cerebral ischemia in rat was induced with middle cerebral artery occlusion. Our resulted showed that intranasal administration is 8-12 times more effective than subcutaneous injection in delivering G-CSF to cerebrospinal fluid and brain parenchyma. Intranasal delivery enhanced the protective effects of G-CSF against ischemic injury in rats, indicated by decreased infarct volume and increased recovery of neurological function. The neuroprotective mechanisms of G-CSF involved enhanced upregulation of HO-1 and reduced calcium overload following ischemia. Intranasal G-CSF application also promoted angiogenesis and neurogenesis following brain ischemia. Taken together, G-CSF is a legitimate neuroprotective agent and intranasal administration of G-CSF is more effective in delivery and neuroprotection and could be a practical approach in clinic.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Fator Estimulador de Colônias de Granulócitos/administração & dosagem , Fator Estimulador de Colônias de Granulócitos/uso terapêutico , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/uso terapêutico , Administração Intranasal , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Infarto Encefálico/complicações , Infarto Encefálico/tratamento farmacológico , Infarto Encefálico/fisiopatologia , Isquemia Encefálica/complicações , Isquemia Encefálica/fisiopatologia , Cálcio/metabolismo , Citoesqueleto/metabolismo , Fator Estimulador de Colônias de Granulócitos/sangue , Fator Estimulador de Colônias de Granulócitos/líquido cefalorraquidiano , Heme Oxigenase-1/metabolismo , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/fisiopatologia , Espaço Intracelular/metabolismo , Masculino , Neovascularização Fisiológica/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Ratos Sprague-Dawley , Tubulina (Proteína)/metabolismo , Regulação para Cima/efeitos dos fármacos
16.
Mol Neurobiol ; 53(1): 369-378, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25432891

RESUMO

Oxidative damage plays a key role in causation and progression of neurodegenerative diseases. Inhibition of oxidative stress represents one of the most effective ways in treating human neurologic diseases. Herein, we evaluated the protective effect of curcumin on PC12 cells against H2O2-induced neurotoxicity and investigated its underlying mechanism. The results indicated that curcumin pre-treatment significantly suppressed H2O2-induced cytotoxicity, inhibited the loss of mitochondrial membrane potential (Δψm) through regulation of Bcl-2 family expression, and ultimately reversed H2O2-induced apoptotic cell death in PC12 cells. Attenuation of caspase activation, poly(ADP-ribose) polymerase (PARP) cleavage, DNA damage, and accumulation of reactive oxygen species (ROS) all confirmed its protective effects. Moreover, curcumin markedly alleviated the dysregulation of the MAPK and AKT pathways induced by H2O2. Taken together, our findings suggest that the strategy of using curcumin could be a highly effective way in combating oxidative damage-mediated human neurodegenerative diseases.


Assuntos
Curcumina/farmacologia , Dano ao DNA , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Neurotoxinas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Apoptose/efeitos dos fármacos , Peróxido de Hidrogênio/toxicidade , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Modelos Biológicos , Fármacos Neuroprotetores/farmacologia , Células PC12 , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos
17.
Mol Neurobiol ; 53(7): 4363-74, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26232068

RESUMO

Hyperglycemia as the major hallmark of diabetic neuropathy severely limited its therapeutic efficiency. Evidences have revealed that selenium (Se) as an essential trace element could effectively reduce the risk of neurological diseases. In the present study, 3,3'-diselenodipropionic acid (DSePA), a derivative of selenocystine, was employed to investigate its protective effect against high glucose-induced neurotoxicity in PC12 cells and evaluate the underlying mechanism. The results suggested that high glucose showed significant cytotoxicity through launching mitochondria-mediated apoptosis in PC12 cells, accompanied by poly (ADP-ribose) polymerase (PARP) cleavage, caspase activation, and mitochondrial dysfunction. Moreover, high glucose also triggered DNA damage and dysregulation of MAPKs and AKT pathways through reactive oxygen species (ROS) overproduction. p53 RNA interference partially suppressed high glucose-induced cytotoxicity and apoptosis, indicating the role of p53 in high glucose-induced signal. However, DSePA pretreatment effectively attenuated high glucose-induced cytotoxicity, inhibited the mitochondrial dysfunction through regulation of Bcl-2 family, and ultimately reversed high glucose-induced apoptotic cell death in PC12 cells. Attenuation of caspase activation, PARP cleavage, DNA damage, and ROS accumulation all confirmed its protective effects. Moreover, DSePA markedly alleviated the dysregulation of AKT and MAPKs pathways induced by high glucose. Our findings revealed that the strategy of using DSePA to antagonize high glucose-induced neurotoxicity may be a highly effective strategy in combating high glucose-mediated neurological diseases.


Assuntos
Dano ao DNA , Glucose/toxicidade , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Neurotoxinas/toxicidade , Propionatos/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Compostos de Selênio/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Animais , Apoptose/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Modelos Biológicos , Células PC12 , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo
18.
Cell Mol Neurobiol ; 36(5): 647-55, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26224360

RESUMO

Hypothermia treatment is one of the neuroprotective strategies that improve neurological outcomes effectively after brain damage. Minimally invasive surgery (MIS) has been an important treatment of intracerebral hemorrhage (ICH). Herein, we evaluated the neuroprotective effect and mechanism of MIS joint local cooling lavage (LCL) treatment on ICH via detecting the inflammatory responses, oxidative injury, and neuronal apoptosis around the hematoma cavity in rats. ICH model was established by type IV collagenase caudatum infusion. The rats were treated with MIS 6 h after injection, and then were lavaged by normothermic (37 °C) and hypothermic (33 °C) normal saline in brain separately. The results indicated that MIS joint LCL treatment showed enhanced therapeutic effects against ICH-induced inflammation injury and apoptosis in rats, as convinced by the decline of TUNEL-positive cells, followed by the decrease of IL-1ß and LDH and increase of IL-10 and SOD. This study demonstrated that the strategy of using MIS joint LCL may achieve enhanced neuroprotection against ICH-induced inflammation injury and apoptosis in rats with potential clinic application.


Assuntos
Apoptose/efeitos dos fármacos , Edema Encefálico/cirurgia , Hemorragia Cerebral/complicações , Procedimentos Cirúrgicos Minimamente Invasivos , Animais , Lesões Encefálicas/cirurgia , Hemorragia Cerebral/terapia , Inflamação/cirurgia , Masculino , Procedimentos Cirúrgicos Minimamente Invasivos/métodos , Neurônios/metabolismo , Ratos Sprague-Dawley , Recuperação de Função Fisiológica/fisiologia , Irrigação Terapêutica/métodos
19.
Cell Mol Neurobiol ; 35(7): 953-9, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25860846

RESUMO

Caudatin, one of the species of C-21 steroidal glycosides mainly isolated from the root of Cynanchum bungei Decne, exhibits potent anticancer activities. However, the mechanism remains poorly defined. In the present study, the growth inhibitory effect and mechanism of caudatin on human glioma cells were evaluated in vitro. The results revealed that caudatin time- and dose-dependently inhibited U251 and U87 cells growth. Flow cytometry analysis indicated that caudatin-induced growth inhibition against U251 and U87 cells was mainly achieved by the induction of G0/G1 and S-phase cell cycle arrest through triggering DNA damage, as convinced by the up-regulation of p53, p21, and histone phosphorylation, as well as the down-regulation of cyclin D1. Moreover, caudatin treatment also triggered the activation of ERK and inactivation of AKT pathway. LY294002 (an AKT inhibitor) addition enhanced caudation-induced AKT inhibition, indicating that caudatin inhibited U251 cells growth in an AKT-dependent manner. Taken together, these results indicate that caudatin may act as a novel cytostatic reagent against human glioma cells through the induction of DNA damage-mediated cell cycle arrest with the involvement of modulating MAPK and AKT pathways.


Assuntos
Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Glioma/tratamento farmacológico , Glicosídeos/uso terapêutico , Inibidores do Crescimento/uso terapêutico , Esteroides/uso terapêutico , Pontos de Checagem do Ciclo Celular/fisiologia , Linhagem Celular Tumoral , Dano ao DNA/fisiologia , Relação Dose-Resposta a Droga , Glioma/metabolismo , Glicosídeos/química , Glicosídeos/farmacologia , Inibidores do Crescimento/farmacologia , Humanos , Esteroides/química , Esteroides/farmacologia
20.
Cell Mol Neurobiol ; 35(7): 995-1001, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25895624

RESUMO

Cisplatin-based chemotherapy in clinic is severely limited by its adverse effect, including neurotoxicity. Oxidative damage contributes to cisplatin-induced neurotoxicity, but the mechanism remains unclearly. Cyanidin, a natural flavonoid compound, exhibits powerful antioxidant activity. Hence, we investigated the protective effects of cyanidin on PC12 cells against cisplatin-induced neurotoxicity and explored the underlying mechanisms. The results showed that cisplatin-induced cytotoxicity was completely reversed by cyanidin through inhibition of PC12 cell apoptosis, as proved by the attenuation of Sub-G1 peak, PARP cleavage, and caspases-3 activation. Mechanistically, cyanidin significantly inhibited reactive oxygen species (ROS)-induced DNA damage in cisplatin-treated PC12 cells. Our findings revealed that cyanidin as an apoptotic inhibitor effectively blocked cisplatin-induced neurotoxicity through inhibition of ROS-mediated DNA damage and apoptosis, predicating its therapeutic potential in prevention of chemotherapy-induced neurotoxicity. Cisplatin caused DNA damage, activated p53, and subsequently induced PC12 cells apoptosis by triggering ROS overproduction. However, cyanidin administration effectively inhibited DNA damage, attenuated p53 phosphorylation, and eventually reversed cisplatin-induced PC12 cell apoptosis through inhibition ROS accumulation.


Assuntos
Antocianinas/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Cisplatino/toxicidade , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Células PC12 , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA