Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(5)2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35269086

RESUMO

In order to address the problem of sulfur gas and other odors released in the process of using sewage sludge as a construction material, this study prepared multiscale composite particles with a "large scale-medium scale-small scale-micro scale" structure by mixing sludge with silica-alumina building materials. Analysis of the structural changes formed by the internal gas of composite particles due to diffusion at different temperatures and a study of the characteristics of SO2 and H2S release from composite particles were conducted, as well as being compared with the release characteristics of pure sludge, which clarified the mechanism of controlling sulfur-containing-gas release from composite particles. The results showed that compared with pure sludge, the sludge-clay multiscale composite particles were able to reduce the release of SO2 and H2S up to 90% and 91%, and the release temperatures of SO2 and H2S were increased to 120 °C and 80 °C, respectively. Meanwhile, the special structure of the sludge-clay multiscale composite particles and the clay composition are the main factors that hinder the diffusion of sludge pyrolysis gases. Additionally, there are three layers of "gray surface layer-black mixed layer-dark gray spherical core" formed inside the composite particles, which is the apparent manifestation of the diffusion of volatile gases. This study provides theoretical support for the application of multiscale composite particle inhibition of odor-release technology in industrial production.

2.
J Control Release ; 183: 124-37, 2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-24657948

RESUMO

The greatest challenge standing in the way of effective in vivo siRNA delivery is creating a delivery vehicle that mediates a high degree of efficacy with a broad therapeutic window. Key structure-activity relationships of a poly(amide) polymer conjugate siRNA delivery platform were explored to discover the optimized polymer parameters that yield the highest activity of mRNA knockdown in the liver. At the same time, the poly(amide) backbone of the polymers allowed for the metabolism and clearance of the polymer from the body very quickly, which was established using radiolabeled polymers to demonstrate the time course of biodistribution and excretion from the body. The fast degradation and clearance of the polymers provided for very low toxicity at efficacious doses, and the therapeutic window of this poly(amide)-based siRNA delivery platform was shown to be much broader than a comparable polymer platform. The results of this work illustrate that the poly(amide) platform has a promising future in the development of a siRNA-based drug approved for human use.


Assuntos
Materiais Biocompatíveis/síntese química , Portadores de Fármacos/síntese química , Fígado/metabolismo , Nylons/síntese química , Peptídeos/síntese química , RNA Interferente Pequeno/administração & dosagem , Animais , Autorradiografia , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacocinética , Materiais Biocompatíveis/toxicidade , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/toxicidade , Desenho de Fármacos , Estabilidade de Medicamentos , Feminino , Células Hep G2 , Hepatócitos/metabolismo , Humanos , Fígado/diagnóstico por imagem , Macaca mulatta , Nylons/química , Nylons/farmacocinética , Nylons/toxicidade , Peptídeos/química , Peptídeos/farmacocinética , Peptídeos/toxicidade , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacocinética , RNA Interferente Pequeno/toxicidade , Cintilografia , Ratos Sprague-Dawley , Especificidade da Espécie , Relação Estrutura-Atividade , Distribuição Tecidual
3.
Bioconjug Chem ; 21(3): 445-55, 2010 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-20131756

RESUMO

Gene delivery biomaterials need to be designed to efficiently achieve nuclear delivery of plasmid DNA. Polycations have been used to package DNA and other nucleic acids within submicrometer-sized particles, offering protection from shear-induced or enzymatic degradation. However, cytotoxicity issues coupled with limited in vivo transfection efficiencies minimize the effectiveness of this approach. In an effort to improve upon existing technologies aimed at delivering nucleic acids, an alternative approach to DNA packaging was explored. Peptide nucleic acids (PNAs) were used to directly functionalize DNA with poly(ethylene glycol) (PEG) chains that provide a steric layer and inhibit multimolecular aggregation during complexation. DNA prePEGylation by this strategy was predicted to enable the formation of more homogeneous and efficiently packaged polyplexes. In this work, DNA-PNA-peptide-PEG (DP3) conjugates were synthesized and self-assembled with 25 kDa poly(ethylenimine) (PEI). Complexes with small standard deviations and average diameters ranging 30-50 nm were created, with minimal dependence of complex size on N/P ratio (PEI amines to DNA phosphates). Furthermore, PEI-DNA interactions were altered by the derivatization strategy, resulting in tighter compaction of the PEI-DP3 complexes in comparison to PEI-DNA complexes. Transfection experiments in Chinese hamster ovary (CHO) cells revealed comparable transfection efficiencies but reduced cytotoxicities of the PEI-DP3 complexes relative to PEI-DNA complexes. The enhanced cellular activities of the PEI-DP3 complexes were maintained following the removal of free PEI from the PEI-DP3 formulations, whereas the cellular activity of the conventional PEI-DNA formulations was reduced by free PEI removal. These findings suggest that DNA prePEGylation by the PNA-based strategy might provide a way to circumvent cytotoxicity and formulation issues related to the use of PEI for in vivo gene delivery.


Assuntos
DNA/química , Ácidos Nucleicos Peptídicos/síntese química , Transfecção/métodos , Animais , Células CHO , Sobrevivência Celular/efeitos dos fármacos , Cricetulus , DNA/genética , Tamanho da Partícula , Ácidos Nucleicos Peptídicos/química , Ácidos Nucleicos Peptídicos/farmacologia , Plasmídeos/química , Plasmídeos/genética , Polietilenoglicóis/química , Polietilenoimina/química , Polietilenoimina/farmacologia , Relação Estrutura-Atividade , Propriedades de Superfície
4.
Arch Biochem Biophys ; 447(1): 34-45, 2006 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-16487475

RESUMO

Hsc70 and gp96 are two heat shock proteins with molecular chaperone and immune-related activities. The dynamic conformational properties of heat shock proteins appear to play a critical role in their biological activities. In this study, we investigated the effects of pH and temperature on the conformational states of Hsc70 and gp96. The quaternary, tertiary, and secondary structures of both proteins are evaluated by a variety of spectroscopic techniques, including far-UV circular dichroism, Trp fluorescence, ANS fluorescence, and derivative UV absorption spectroscopy. The results are summarized and compared employing an empirical phase diagram approach. Very similar behaviors are seen for both proteins despite their differences in sequence and tertiary structure. Both proteins show substantial conformational lability in responses to the pH and temperature changes of their environment. This study suggests a natural selection for related functional properties through common conformational dynamics rather than immediate structural homology.


Assuntos
Antígenos de Neoplasias/análise , Antígenos de Neoplasias/química , Proteínas de Choque Térmico HSC70/análise , Proteínas de Choque Térmico HSC70/química , Sequência de Aminoácidos , Concentração de Íons de Hidrogênio , Chaperonas Moleculares/análise , Chaperonas Moleculares/química , Dados de Sequência Molecular , Conformação Proteica , Relação Estrutura-Atividade , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA