Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38507172

RESUMO

Long non-coding RNA (lncRNA) is associated with a large number of tumor cellular functions together with chemotherapy resistance in a variety of tumors. LINC00963 was identified to regulate the malignant progression of various cancers. However, whether LINC00963 affects drug resistence in esophageal squamous cell carcinoma (ESCC) and the relevant molecular mechanisms have never been reported. This study aims to investigate the effect of LINC00963 on cisplatin resistance in ESCC. After detecting the level of LINC00963 in human esophageal squamous epithelial cells (HET-1 A), ESCC cells (TE-1) and cisplatin resistant cells of ESCC (TE-1/DDP), TE-1/DDP cell line and nude mouse model that interfered with LINC00963 expression were established. Then, the interaction among LINC00963, miR-10a, and SKA1 was clarified by double luciferase and RNA immunoprecipitation (RIP) assays. Meanwhile, the biological behavior changes of TE-1/DDP cells with miR-10a overexpression or SKA1 silencing were observed by CCK-8, flow cytometry, scratch, Transwell, and colony formation tests. Finally, the biological function of the LINC00963/SKA1 axis was elucidated by rescue experiments. LINC00963 was upregulated in TE-1 and TE-1/DDP cell lines. LINC00963 knockdown inhibited SKA1 expression of both cells and impaired tumorigenicity. Moreover, LINC00963 has a target relationship with miR-10a, and SKA1 is a target gene of miR-10a. MiR-10a overexpression or SKA1 silencing decreased the biological activity of TE-1/DDP cells and the expression of SKA1. Furthermore, SKA1 overexpression reverses the promoting effect of LINC00963 on cisplatin resistance of ESCC. LINC00963 regulates TE-1/DDP cells bioactivity and mediates cisplatin resistance through interacting with miR-10a and upregulating SKA1 expression.

2.
Genes Dis ; 11(3): 101026, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38292186

RESUMO

The evolutionarily conserved Wnt signaling pathway plays a central role in development and adult tissue homeostasis across species. Wnt proteins are secreted, lipid-modified signaling molecules that activate the canonical (ß-catenin dependent) and non-canonical (ß-catenin independent) Wnt signaling pathways. Cellular behaviors such as proliferation, differentiation, maturation, and proper body-axis specification are carried out by the canonical pathway, which is the best characterized of the known Wnt signaling paths. Wnt signaling has emerged as an important factor in stem cell biology and is known to affect the self-renewal of stem cells in various tissues. This includes but is not limited to embryonic, hematopoietic, mesenchymal, gut, neural, and epidermal stem cells. Wnt signaling has also been implicated in tumor cells that exhibit stem cell-like properties. Wnt signaling is crucial for bone formation and presents a potential target for the development of therapeutics for bone disorders. Not surprisingly, aberrant Wnt signaling is also associated with a wide variety of diseases, including cancer. Mutations of Wnt pathway members in cancer can lead to unchecked cell proliferation, epithelial-mesenchymal transition, and metastasis. Altogether, advances in the understanding of dysregulated Wnt signaling in disease have paved the way for the development of novel therapeutics that target components of the Wnt pathway. Beginning with a brief overview of the mechanisms of canonical and non-canonical Wnt, this review aims to summarize the current knowledge of Wnt signaling in stem cells, aberrations to the Wnt pathway associated with diseases, and novel therapeutics targeting the Wnt pathway in preclinical and clinical studies.

3.
Front Oncol ; 13: 1265204, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37901337

RESUMO

Background: Postoperative pulmonary complications (PPCs) significantly increase the morbidity and mortality in elderly patients with lung cancer. Considering the adverse effects of PPCs, we aimed to derive and validate a nomogram to predict pulmonary complications after video-assisted thoracoscopic surgery in elderly patients with lung cancer and to assist surgeons in optimizing patient-centered treatment plans. Methods: The study enrolled 854 eligible elderly patients with lung cancer who underwent sub-lobectomy or lobectomy. A clinical prediction model for the probability of PPCs was developed using univariate and multivariate analyses. Furthermore, data from one center were used to derive the model, and data from another were used for external validation. The model's discriminatory capability, predictive accuracy, and clinical usefulness were assessed using the receiver operating characteristic (ROC) curve, calibration curve, and decision curve analysis, respectively. Results: Among the eligible elderly patients with lung cancer, 214 (25.06%) developed pulmonary complications after video-assisted thoracoscopic surgery. Age, chronic obstructive pulmonary disease, surgical procedure, operative time, forced expiratory volume in one second, and the carbon monoxide diffusing capacity of the lung were independent predictors of PPCs and were included in the final model. The areas under the ROC curves (AUC) of the training and validation sets were 0.844 and 0.796, respectively. Ten-fold cross-validation was used to evaluate the generalizability of the predictive model, with an average AUC value of 0.839. The calibration curve showed good consistency between the observed and predicted probabilities. The proposed nomogram showed good net benefit with a relatively wide range of threshold probabilities. Conclusion: A nomogram for elderly patients with lung cancer can be derived using preoperative and intraoperative variables. Our model can also be accessed using the online web server https://pulmonary-disease-predictor.shinyapps.io/dynnomapp/. Combining both may help surgeons as a clinically easy-to-use tool for minimizing the prevalence of pulmonary complications after lung resection in elderly patients.

4.
Cancer Metab ; 11(1): 9, 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37443106

RESUMO

BACKGROUND: Excessive hepatic glycogen accumulation benefits tumorigenesis and cancer cell survival. We previously reported that BMP4 has the strongest ability to promote glycogenesis among the 14 BMPs in hepatocytes and augmented hepatocellular carcinoma (HCC) cell survival under hypoxia and hypoglycemia conditions by promoting the glycolysis pathway. However, the mechanism underlying BMP4's effect on glycogenesis in HCC remains elusive. METHODS: The expression of BMP4 and SLC2A1 were acquired by analyzing the TCGA-LIHC dataset, as well as by immunohistochemical analysis of the 40 pairs of human HCC samples and para-tumor tissues. Gene expressions were detected by qPCR, immunoflurorescence staining, and Western blotting. Overexpression and silencing of BMP4 were accomplished through adenoviruses Ad-B4 and Ad-siB4 infection. Hepatic glycogen was detected by PAS staining. SLC2A1 (GLUT1) function was blocked by the inhibitor BAY-876. ChIP assay was used to determine the binding of SMADs to the promoter region of SLC2A1 in HCC cells. Lastly, the in vivo effect of BMP4-regulated SLC2A1 on HCC tumor growth was assessed in a xenograft model of HCC. RESULTS: The elevated expression of BMP4 in HCC tumor tissues was highly correlated with hepatic glycogen accumulation in clinical samples. SLC2A1 was highly expressed in HCC tumor tissue and correlated with clinical stage and prognosis. Exogenous BMP4 augmented glycogen accumulation and upregulated the expression of glycogen synthesis-related genes in Huh7 and HepG2 cells, both of which were effectively blunted by SLC2A1inhibitor BAY-876. In mechanism, BMP4 activated SMAD5 to regulate the promoter of SLC2A1to enhance its expression. The in vivo xenograft experiments revealed that BMP4 promoted glycogen accumulation and tumor growth, which were effectively diminished by BAY-876. CONCLUSION: These results demonstrate that BMP4 upregulates glycogen synthesis through the SMAD/SLC2A1 (GLUT1) signaling axis in HCC cells, which may be exploited as novel therapeutic targets for HCC treatment.

5.
Genes Dis ; 10(4): 1351-1366, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37397543

RESUMO

Recent advances in deep sequencing technologies have revealed that, while less than 2% of the human genome is transcribed into mRNA for protein synthesis, over 80% of the genome is transcribed, leading to the production of large amounts of noncoding RNAs (ncRNAs). It has been shown that ncRNAs, especially long non-coding RNAs (lncRNAs), may play crucial regulatory roles in gene expression. As one of the first isolated and reported lncRNAs, H19 has gained much attention due to its essential roles in regulating many physiological and/or pathological processes including embryogenesis, development, tumorigenesis, osteogenesis, and metabolism. Mechanistically, H19 mediates diverse regulatory functions by serving as competing endogenous RNAs (CeRNAs), Igf2/H19 imprinted tandem gene, modular scaffold, cooperating with H19 antisense, and acting directly with other mRNAs or lncRNAs. Here, we summarized the current understanding of H19 in embryogenesis and development, cancer development and progression, mesenchymal stem cell lineage-specific differentiation, and metabolic diseases. We discussed the potential regulatory mechanisms underlying H19's functions in those processes although more in-depth studies are warranted to delineate the exact molecular, cellular, epigenetic, and genomic regulatory mechanisms underlying the physiological and pathological roles of H19. Ultimately, these lines of investigation may lead to the development of novel therapeutics for human diseases by exploiting H19 functions.

7.
Cell Transplant ; 32: 9636897231152381, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36786355

RESUMO

Bone marrow stem cell (BMSC) transplantation during coronary artery bypass graft (CABG) is an innovative treatment for ischemic heart disease (IHD). We conduct a meta-analysis to examine whether patients with IHD presenting heart failure with reduced ejection fraction (HFrEF) can be beneficent from CABG with additional BMSC transplantation. Electronic searches were performed on PubMed, EMBASE, Cochrane Library, and ClinicalTrials.gov from their inception to July 2021. The efficacy was based on left ventricular ejection fraction (LVEF), left ventricular end-diastolic diameter (LVEDD), left ventricular end-diastolic volume (LVEDV), left ventricular end-diastolic volume index (LVEDVi), left ventricular end-systolic volume index (LVESVi), and 6-min walk test (6MWT) change after treatment. Eight randomized-controlled trials (RCTs) were included in this meta-analysis, with a total of 350 patients. Results showed BMSC transplantation significantly improved the LVEF [mean difference (MD) = 6.23%, 95% confidence interval (CI): 3.22%-9.24%, P < 0.0001], LVEDVi (MD = -20.15 ml/m2, 95% CI: -30.49 to -9.82 ml/m2, P < 0.00001), and LVESVi (MD = -17.69 ml/m2, 95% CI: -25.24 to -10.14 ml/m2, P < 0.00001). There was no statistically significant difference in the improvement of LVEDD, LVEDV, and 6MWT between the cell transplantation group and control groups. Subgroup analysis revealed that the intervention for control group could affect the efficacy of BMSC transplantation. Sensitivity analysis found the conclusion of LVEDD, LVEDV, and 6MWT changes was not stable. Therefore, among patients with IHD presenting HFrEF, BMSC transplantation during CABG is promising to be beneficial for postoperative left ventricular (LV) function improvement. However, according to the unstable results of the sensitivity analysis, it cannot be concluded whether the extra step has a positive effect on left ventricular remodeling and exercise capacity. RCTs with larger cohorts and more strict protocols are needed to validate these conclusions.


Assuntos
Insuficiência Cardíaca , Isquemia Miocárdica , Disfunção Ventricular Esquerda , Humanos , Medula Óssea , Ponte de Artéria Coronária/métodos , Função Ventricular Esquerda , Volume Sistólico , Disfunção Ventricular Esquerda/terapia , Insuficiência Cardíaca/cirurgia , Transplante de Medula Óssea/métodos , Resultado do Tratamento
8.
Bioeng Transl Med ; 7(3): e10306, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36176604

RESUMO

Effective and safe liver-directed gene therapy has great promise in treating a broad range of liver diseases. While adenoviral (Ad) vectors have been widely used for efficacious in vivo gene delivery, their translational utilities are severely limited due to the short duration of transgene expression and solicitation of host immune response. Used as a promising polymeric vehicle for drug release and nucleic acid delivery, carboxymethyl chitosan (CMC) is biocompatible, biodegradable, anti-microbial, inexpensive, and easy accessible. Here, by exploiting its biocompatibility, controlled release capability and anti-inflammatory activity, we investigated whether CMC can overcome the shortcomings of Ad-mediated gene delivery, hence improving the prospect of Ad applications in gene therapy. We demonstrated that in the presence of optimal concentrations of CMC, Ad-mediated transgene expression lasted up to 50 days after subcutaneous injection, and at least 7 days after intrahepatic injection. Histologic evaluation and immunohistochemical analysis revealed that CMC effectively alleviated Ad-induced host immune response. In our proof-of-principle experiment using the CCl4-induced experimental mouse model of chronic liver damage, we demonstrated that repeated intrahepatic administrations of Ad-IL10 mixed with CMC effectively mitigated the development of hepatic fibrosis. Collectively, these results indicate that CMC can improve the prospect of Ad-mediated gene therapy by diminishing the host immune response while allowing readministration and sustained transgene expression.

9.
J Biol Chem ; 298(10): 102479, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36096200

RESUMO

The WNT-ß-catenin signaling pathway has a major role in regulating cell proliferation and differentiation. Aberrant activation of the pathway contributes to various human cancer types. Because casein kinase CK1α-initiated phosphorylation of ß-catenin is a key first step to restrain WNT signaling, effective restoration of CK1α activity represents an innovative strategy to combat WNT-driven cancer. A recent study in JBC reveals the anthelmintic pyrvinium directly binds to CK1α as an activator and also stabilizes CK1α protein, doubling against WNT-driven cancer activity.


Assuntos
Neoplasias , Compostos de Pirvínio , Humanos , beta Catenina/genética , beta Catenina/metabolismo , Compostos de Pirvínio/farmacologia , Via de Sinalização Wnt , Neoplasias/tratamento farmacológico , Neoplasias/genética
10.
Appl Immunohistochem Mol Morphol ; 30(6): 459-468, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35603802

RESUMO

High-grade neuroendocrine carcinoma (HGNEC) is subclassified into small cell carcinoma (SmCC) and large cell neuroendocrine carcinoma (LCNEC). Although both are clinically aggressive, the SmCC and LCNEC need to have different treatment strategies, and accurate pathologic diagnosis is challenging. We studied a large retrospective cohort (186 cases) of HGNEC of bladder and lung to investigate the abundance of cytokeratin (CK) 7 expression and staining pattern in SmCC and LCNEC. Overall, the pulmonary and urinary HGNEC exhibited several different CK7 staining patterns, including negative staining (n=28), dot-like staining (n=73), partial membranous staining (n=26), and complete membranous staining (n=60). Overall, 88.9% (44/49) of pulmonary SmCC and 88.0% (44/50) of urinary SmCC showed negative or dot-like patterns for CK7, while 90.8% (59/65) of pulmonary LCNEC and 72.7% (16/22) of urinary LCNEC showed partial or complete membranous patterns for CK7 (χ 2 =105.05, P <0.0001). The distinct staining patterns were also present in those mixed SmCC and LCNEC. In addition, the specimen types or fixation did not affect CK7 staining patterns. In conclusion, CK7 has a high differential value for SmCC and LCNEC and could help guide personalized treatment for patients.


Assuntos
Carcinoma de Células Grandes , Carcinoma Neuroendócrino , Carcinoma de Células Pequenas , Neoplasias Pulmonares , Carcinoma de Células Grandes/diagnóstico , Carcinoma Neuroendócrino/diagnóstico , Carcinoma Neuroendócrino/patologia , Carcinoma de Células Pequenas/diagnóstico , Carcinoma de Células Pequenas/patologia , Humanos , Imuno-Histoquímica , Queratina-7 , Pulmão/metabolismo , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/patologia , Estudos Retrospectivos
11.
Genes Dis ; 9(2): 347-357, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35224151

RESUMO

The treatment of cancer mainly involves surgical excision supplemented by radiotherapy and chemotherapy. Chemotherapy drugs act by interfering with tumor growth and inducing the death of cancer cells. Anti-tumor drugs were developed to induce apoptosis, but some patient's show apoptosis escape and chemotherapy resistance. Therefore, other forms of cell death that can overcome the resistance of tumor cells are important in the context of cancer treatment. Ferroptosis is a newly discovered iron-dependent, non-apoptotic type of cell death that is highly negatively correlated with cancer development. Ferroptosis is mainly caused by the abnormal increase in iron-dependent lipid reactive oxygen species and the imbalance of redox homeostasis. This review summarizes the progression and regulatory mechanism of ferroptosis in cancer and discusses its possible clinical applications in cancer diagnosis and treatment.

12.
Bioact Mater ; 9: 523-540, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34820586

RESUMO

Skin injury is repaired through a multi-phase wound healing process of tissue granulation and re-epithelialization. Any failure in the healing process may lead to chronic non-healing wounds or abnormal scar formation. Although significant progress has been made in developing novel scaffolds and/or cell-based therapeutic strategies to promote wound healing, effective management of large chronic skin wounds remains a clinical challenge. Keratinocytes are critical to re-epithelialization and wound healing. Here, we investigated whether exogenous keratinocytes, in combination with a citrate-based scaffold, enhanced skin wound healing. We first established reversibly immortalized mouse keratinocytes (iKera), and confirmed that the iKera cells expressed keratinocyte markers, and were responsive to UVB treatment, and were non-tumorigenic. In a proof-of-principle experiment, we demonstrated that iKera cells embedded in citrate-based scaffold PPCN provided more effective re-epithelialization and cutaneous wound healing than that of either PPCN or iKera cells alone, in a mouse skin wound model. Thus, these results demonstrate that iKera cells may serve as a valuable skin epithelial source when, combining with appropriate biocompatible scaffolds, to investigate cutaneous wound healing and skin regeneration.

13.
Front Pharmacol ; 13: 991581, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36605396

RESUMO

Background: Emergency agitation is a common postoperative complication in pediatric patients after general anesthesia. The aim of this study was to explore the effects of a low dose of esketamine on emergency agitation in children following tonsillectomy. Materials and Methods: Eighty children were recruited prospectively to this study and divided into the esketamine group and the control group (40 cases in each group). The induction and maintenance of anesthesia were the same in both groups. At the end of surgery, the esketamine group received 0.25 µg/kg esketamine, while the control group received the same volume of normal saline. The extubation time, time to eye opening, Ramsay sedation scale and time to discharge from the post-anesthesia care unit (PACU) were recorded during post-anesthesia care unit. Postoperative complications, such as emergency agitation, respiratory depression, hypertension, tachycardia, nightmares, nausea, and vomiting, were also recorded. Results: The incidence of emergency agitation was lower in the esketamine group compared with that in the control group (5% vs. 27.5%, p = 0.006). The time to eye opening was longer in the esketamine group than in the control group (17.2 ± 2.7 vs. 15.5 ± 2.3 min, p = 0.005). However, the extubation time and time to discharge from PACU were similar between the two groups. Conclusion: Low-dose of esketamine decreases the incidence of emergency agitation in children after tonsillectomy without delaying extubation time and increasing the postoperative side effects. (www.chictr.org.cn, registration number: ChiCTR2100054178).

14.
Case Rep Pathol ; 2021: 9992978, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34306787

RESUMO

Retroperitoneal metastasis of seminoma often occurs in the higher stage through lymph nodes. Generally, seminoma expresses specific germ cell markers while being negative for carcinoma markers. We present a unique case of cytokeratin positive seminoma initially presented as retroperitoneal metastasis. The diagnosis was made based on the histological features and immunohistochemical stains. Testicular ultrasound confirmed the primary tumor in the patient's left testicle. Pathologists should always be aware of germ cell tumors when encountering a metastasis of an unknown primary.

15.
Am J Cancer Res ; 11(3): 793-811, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33791154

RESUMO

Hepatocellular carcinoma (HCC) is one of the leading causes of cancer death worldwide although its pathogenic mechanism remains to be fully understood. Unlike normal cells, most cancer cells rely on aerobic glycolysis and are more adaptable to the microenvironment of hypoxia and hypoglycemia. Bone Morphogenetic Protein 4 (BMP4) plays important roles in regulating proliferation, differentiation, invasion and migration of HCC cells. We have recently shown that BMP4 plays an important role in regulating glucose metabolism although the effect of BMP4 on glucose metabolic reprogramming of HCC is poorly understood. In this study, we found that BMP4 was highly expressed in HCC tumor tissues, as well as HCC cell lines that were tolerant to hypoxia and hypoglycemia. Mechanistically, we demonstrated that BMP4 protected HCC cells from hypoxia and hypoglycemia by promoting glycolysis since BMP4 up-regulated glucose uptake, the lactic acid production, the ATP level, and the activities of rate limiting enzymes of glycolysis (including HK2, PFK and PK). Furthermore, we demonstrated that BMP4 up-regulated HK2, PFKFB3 and PKM2 through the canonical Smad signal pathway as SMAD5 directly bound to the promoter of PKM. Collectively, our findings shown that BMP4 may play an important role in regulating glycolysis of HCC cells under hypoxia and hypoglycemia condition, indicating that novel therapeutics may be developed to target BMP4-regulated glucose metabolic reprogramming in HCC.

16.
Aging (Albany NY) ; 13(3): 4199-4214, 2021 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-33461171

RESUMO

Long non-coding RNAs are important regulators of biological processes, but their roles in the osteogenic differentiation of mesenchymal stem cells (MSCs) remain unclear. Here we investigated the role of murine HOX transcript antisense RNA (mHotair) in BMP9-induced osteogenic differentiation of MSCs using immortalized mouse adipose-derived cells (iMADs). Touchdown quantitative polymerase chain reaction analysis found increased mHotair expression in bones in comparison with most other tissues. Moreover, the level of mHotair in femurs peaked at the age of week-4, a period of fast skeleton development. BMP9 could induce earlier peak expression of mHotair during in vitro iMAD osteogenesis. Silencing mHotair diminished BMP9-induced ALP activity, matrix mineralization, and expression of osteogenic, chondrogenic and adipogenic markers. Cell implantation experiments further confirmed that knockdown of mHotair attenuated BMP9-induced ectopic bone formation and mineralization of iMADs, leading to more undifferentiated cells. Crystal violet staining and cell cycle analysis revealed that silencing of mHotair promoted the proliferation of iMAD cells regardless of BMP9 induction. Moreover, ectopic bone masses developed from mHotair-knockdown iMAD cells exhibited higher expression of PCNA than the control group. Taken together, our results demonstrated that murine mHotair is an important regulator of BMP9-induced MSC osteogenesis by targeting cell cycle and proliferation.


Assuntos
Diferenciação Celular/genética , Proliferação de Células/genética , Células-Tronco Mesenquimais , Ossificação Heterotópica/genética , Osteogênese/genética , RNA Longo não Codificante/genética , Adipogenia/genética , Fosfatase Alcalina/metabolismo , Animais , Ciclo Celular/genética , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Condrogênese/genética , Técnicas de Silenciamento de Genes , Fator 2 de Diferenciação de Crescimento/farmacologia , Camundongos , Ossificação Heterotópica/metabolismo , Osteogênese/efeitos dos fármacos , Antígeno Nuclear de Célula em Proliferação/metabolismo , Microtomografia por Raio-X
17.
Mol Ther Oncolytics ; 23: 602-611, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34977337

RESUMO

Adenovirus (Ad) is a non-enveloped linear double-stranded DNA virus with >50 serotypes in humans. Ad vectors have been used as gene delivery vehicles to express transgenes, small interfering RNAs (siRNAs) for gene silencing, or CRISPR/Cas and designer nucleases for genome editing. Although several methods are used to generate Ad vectors, the Ad-making process remains technically challenging and time consuming. Moreover, the Ad-making techniques have not been improved for the past two decades. Gibson DNA Assembly (GDA) technology allows one-step isothermal DNA assembly of multiple overlapping fragments. Here, we developed a one-step construction of Ad (OSCA) system using GDA technology. Specifically, we first engineered several adenoviral recipient vectors that contain the ccdB suicide gene flanked with two 20-bp unique sequences, which serve as universal sites for GDA reactions in the Ad genome ΔE1 region. In two proof-of-principle experiments, we demonstrated that the GDA reactions were highly efficient and that the resulting Ad plasmids could be effectively packaged into Ads. Ad-mediated expression of mouse BMP9 in mesenchymal stem cells was shown to effectively induce osteogenic differentiation both in vitro and in vivo. Collectively, our results demonstrate that the OSCA system drastically streamlines the Ad-making process and should facilitate Ad-based applications in basic, translational, and clinical research.

18.
J Adv Res ; 24: 239-250, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32373357

RESUMO

RNA sequencing (RNA-seq)-based whole transcriptome analysis (WTA) using ever-evolving next-generation sequencing technologies has become a primary tool for coding and/or noncoding transcriptome profiling. As WTA requires RNA-seq data for both coding and noncoding RNAs, one key step for obtaining high-quality RNA-seq data is to remove ribosomal RNAs, which can be accomplished by using various commercial kits. Nonetheless, an ideal rRNA removal method should be efficient, user-friendly and cost-effective so it can be adapted for homemade RNA-seq library construction. Here, we developed a novel reverse transcriptase-mediated ribosomal RNA depletion (RTR2D) method. We demonstrated that RTR2D was simple and efficient, and depleted human or mouse rRNAs with high specificity without affecting coding and noncoding transcripts. RNA-seq data analysis indicated that RTR2D yielded highly correlative transcriptome landscape with that of NEBNext rRNA Depletion Kit at both mRNA and lncRNA levels. In a proof-of-principle study, we found that RNA-seq dataset from RTR2D-depleted rRNA samples identified more differentially expressed mRNAs and lncRNAs regulated by Nutlin3A in human osteosarcoma cells than that from NEBNext rRNA Depletion samples, suggesting that RTR2D may have lower off-target depletion of non-rRNA transcripts. Collectively, our results have demonstrated that the RTR2D methodology should be a valuable tool for rRNA depletion.

19.
Genes Dis ; 7(2): 235-244, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32215293

RESUMO

Bone morphogenetic protein 9 (BMP9) (or GDF2) was originally identified from fetal mouse liver cDNA libraries. Emerging evidence indicates BMP9 exerts diverse and pleiotropic functions during postnatal development and in maintaining tissue homeostasis. However, the expression landscape of BMP9 signaling during development and/or in adult tissues remains to be analyzed. Here, we conducted a comprehensive analysis of the expression landscape of BMP9 and its signaling mediators in postnatal mice. By analyzing mouse ENCODE transcriptome datasets we found Bmp9 was highly expressed in the liver and detectable in embryonic brain, adult lungs and adult placenta. We next conducted a comprehensive qPCR analysis of RNAs isolated from major mouse tissues/organs at various ages. We found that Bmp9 was highly expressed in the liver and lung tissues of young adult mice, but decreased in older mice. Interestingly, Bmp9 was only expressed at low to modest levels in developing bones. BMP9-associated TGFß/BMPR type I receptor Alk1 was highly expressed in the adult lungs. Furthermore, the feedback inhibitor Smads Smad6 and Smad7 were widely expressed in mouse postnatal tissues. However, the BMP signaling antagonist noggin was highly expressed in fat and heart in the older age groups, as well as in kidney, liver and lungs in a biphasic fashion. Thus, our findings indicate that the circulating BMP9 produced in liver and lungs may account for its pleiotropic effects on postnatal tissues/organs although possible roles of BMP9 signaling in liver and lungs remain to be fully understood.

20.
Am J Transl Res ; 12(12): 8084-8098, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33437383

RESUMO

Ovarian cancer is one of the most common cancers in women and the second most common cause of gynecologic cancer death in women worldwide. While ovarian cancer is highly heterogeneous in histological subtypes and molecular genetic makeup, epithelial ovarian cancer is the most common subtype. The clinical outcomes of ovarian cancer largely depend on early detection and access to appropriate surgery and systemic therapy. While combination therapy with platinum-based drugs and paclitaxel (PTX) remains the first-line systemic therapy for ovarian cancer, many patients experience recurrence and die of progressive chemoresistance. Thus, there is an unmet clinical need to overcome recurrent disease due to resistance to chemotherapies of ovarian cancer. Here, we investigated whether BRAF inhibitors (BRAFi) could sensitize PTX-resistant ovarian cancer cells to PTX, and thus would overcome the resistance to chemotherapies. We found that BRAF and several members of the RAS/MAPK pathways were upregulated upon PTX treatment in ovarian cancer cells, and that BRAF expression was significantly elevated in the PTX-resistant ovarian cancer cells. While the BRAFi vemurafenib (VEM) alone did not cause any significant cytotoxicity in PTX-resistant ovarian cancer cells, VEM significantly enhanced PTX-induced growth inhibition and apoptosis in a dose-dependent manner. Furthermore, VEM and PTX were shown to synergistically inhibit tumor growth and cell proliferation of PTX-resistant human ovarian cancer cells in vivo. Collectively, these findings strongly suggest that BRAFi may be exploited as synergistic sensitizers of paclitaxel in treating chemoresistant ovarian cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA