Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Neurol Res ; 46(4): 367-377, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38468466

RESUMO

OBJECTIVES: The search for drugs that can protect the brain tissue and reduce nerve damage in acute ischemic stroke has emerged as a research hotspot. We investigated the potential protective effects and mechanisms of action of dihydroergotamine against ischemic stroke. METHODS: C57BL/6 mice were subjected to middle cerebral artery occlusion (MCAO), and dihydroergotamine at a dose of 10 mg/kg/day was intraperitoneally injected for 14 days. Adhesive removal and beam walking tests were conducted 1, 3, 5, 7, 10, and 14 days after MCAO surgery. Thereafter, the mechanism by which dihydroergotamine regulates microglia/macrophage polarization and inflammation and imparts ischemic stroke protection was studied using enzyme-linked immunosorbent assay, immunofluorescence staining, and western blotting. RESULTS: From the perspective of a drug repurposing strategy, dihydroergotamine was found to inhibit oxygen-glucose deprivation damage to neurons, significantly improve cell survival rate, and likely exert a protective effect on ischemic brain injury. Dihydroergotamine significantly improved neural function scores and survival rates and reduced brain injury severity in mice. Furthermore, dihydroergotamine manifests its protective effect on ischemic brain injury by reducing the expression of TNF-α and IL-1ß in mouse ischemic brain tissue, inhibiting the polarization of microglia/macrophage toward the M1 phenotype and promoting polarization toward the M2 phenotype. CONCLUSION: This study is the first to demonstrate the protective effect of dihydroergotamine, a first-line treatment for migraine, against ischemic nerve injury in vitro and in vivo.


Assuntos
Lesões Encefálicas , Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Camundongos , Animais , Microglia , Acidente Vascular Cerebral/tratamento farmacológico , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/prevenção & controle , Di-Hidroergotamina/farmacologia , Di-Hidroergotamina/uso terapêutico , Camundongos Endogâmicos C57BL , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/tratamento farmacológico , Macrófagos , Inflamação/tratamento farmacológico
2.
CNS Neurosci Ther ; 30(3): e14676, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38488446

RESUMO

AIM: To explore the neuroprotective effects of ARA290 and the role of ß-common receptor (ßCR) in a mouse model of middle cerebral artery occlusion (MCAO). METHODS: This study included male C57BL/6J mice that underwent MCAO and reperfusion. The neuroprotective effect of ARA290 on MCAO-induced brain injury was investigated using neurological function tests (Longa and modified neurological severity score). Cerebral infarction was examined by 2, 3, 5-triphenyl tetrazolium chloride staining, neuronal apoptosis was assessed by immunofluorescence staining, blood parameters were measured using a flow cytometry-based automated hematology analyzer, liquid chromatography with tandem mass spectrometry was used to identify the serum metabolomics signature, inflammatory cytokines and liver index were detected by commercially available kits, and the protein levels of the erythropoietin (EPO) receptor and ßCR were measured by western blot. RESULTS: ARA290 exerted a qualitatively similar neuroprotective effect after MCAO as EPO. ARA290 significantly reduced neuronal apoptosis and the level of inflammatory cytokines in the brain tissue. However, ARA290's neuroprotective effect was significantly suppressed following the injection of siRNA against ßCR. CONCLUSION: ARA290 provided a neuroprotective effect via ßCR in cerebral ischemic mice without causing erythropoiesis. This study provides novel insights into the role of ARA290 in ischemic stroke intervention.


Assuntos
Isquemia Encefálica , Eritropoetina , AVC Isquêmico , Fármacos Neuroprotetores , Oligopeptídeos , Traumatismo por Reperfusão , Acidente Vascular Cerebral , Camundongos , Masculino , Animais , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Camundongos Endogâmicos C57BL , Eritropoetina/uso terapêutico , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/genética , Peptídeos , Infarto da Artéria Cerebral Média/tratamento farmacológico , Citocinas , Encéfalo , Isquemia Encefálica/tratamento farmacológico
3.
Cell Mol Life Sci ; 81(1): 56, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38270638

RESUMO

BACKGROUND: Until now, there has been no particularly effective treatment for chronic kidney disease (CKD). Fibrosis is a common pathological change that exist in CKD. METHODS: To better understand the transcriptional dynamics in fibrotic kidney, we make use of single-nucleus assay for transposase-accessible chromatin sequencing (snATAC-seq) and single-cell RNA sequencing (scRNA-seq) from GEO datasets and perform scRNA-seq of human biopsy to seek possible transcription factors (TFs) regulating target genes in the progress of kidney fibrosis across mouse and human kidneys. RESULTS: Our analysis has displayed chromatin accessibility, gene expression pattern and cell-cell communications at single-cell level in kidneys suffering from unilateral ureteral obstruction (UUO) or chronic interstitial nephritis (CIN). Using multimodal data, there exists epigenetic regulation producing less Sod1 and Sod2 mRNA within the proximal tubule which is hard to withstand oxidative stress during fibrosis. Meanwhile, a transcription factor Nfix promoting the apoptosis-related gene Ifi27 expression found by multimodal data was validated by an in vitro study. And the gene Ifi27 upregulated by in situ AAV injection within the kidney cortex aggravates kidney fibrosis. CONCLUSIONS: In conclusion, as we know oxidation and apoptosis are traumatic factors during fibrosis, thus enhancing antioxidation and inhibiting the Nfix-Ifi27 pathway to inhibit apoptosis could be a potential treatment for kidney fibrosis.


Assuntos
Antioxidantes , Insuficiência Renal Crônica , Humanos , Animais , Camundongos , Epigênese Genética/genética , Multiômica , Rim , Apoptose/genética , Cromatina , Fibrose , Fatores de Transcrição NFI
4.
Front Med (Lausanne) ; 10: 1066125, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37469661

RESUMO

Introduction: Hyperplasia of the mesangial area is common in IgA nephropathy (IgAN) and diabetic nephropathy (DN), and it is often difficult to distinguish them by light microscopy alone, especially in the absence of clinical data. At present, artificial intelligence (AI) is widely used in pathological diagnosis, but mainly in tumor pathology. The application of AI in renal pathological is still in its infancy. Methods: Patients diagnosed as IgAN or DN by renal biopsy in First Affiliated Hospital of Zhejiang Chinese Medicine University from September 1, 2020 to April 30, 2022 were selected as the training set, and patients who diagnosed from May 1, 2022 to June 30, 2022 were selected as the test set. We focused on the glomerulus and captured the field of the glomerulus in Masson staining WSI at 200x magnification, all in 1,000 × 1,000 pixels JPEG format. We augmented the data from training set through minor affine transformation, and then randomly split the training set into training and adjustment data according to 8:2. The training data and the Yolov5 6.1 algorithm were used to train the AI model with constant adjustment of parameters according to the adjusted data. Finally, we obtained the optimal model, tested this model with test set and compared it with renal pathologists. Results: AI can accurately detect the glomeruli. The overall accuracy of AI glomerulus detection was 98.67% and the omission rate was only 1.30%. No Intact glomerulus was missed. The overall accuracy of AI reached 73.24%, among which the accuracy of IgAN reached 77.27% and DN reached 69.59%. The AUC of IgAN was 0.733 and that of DN was 0.627. In addition, compared with renal pathologists, AI can distinguish IgAN from DN more quickly and accurately, and has higher consistency. Discussion: We constructed an AI model based on Masson staining images of renal tissue to distinguish IgAN from DN. This model has also been successfully deployed in the work of renal pathologists to assist them in their daily diagnosis and teaching work.

5.
Signal Transduct Target Ther ; 7(1): 146, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35504917

RESUMO

With the constantly mutating of SARS-CoV-2 and the emergence of Variants of Concern (VOC), the implementation of vaccination is critically important. Existing SARS-CoV-2 vaccines mainly include inactivated, live attenuated, viral vector, protein subunit, RNA, DNA, and virus-like particle (VLP) vaccines. Viral vector vaccines, protein subunit vaccines, and mRNA vaccines may induce additional cellular or humoral immune regulations, including Th cell responses and germinal center responses, and form relevant memory cells, greatly improving their efficiency. However, some viral vector or mRNA vaccines may be associated with complications like thrombocytopenia and myocarditis, raising concerns about the safety of these COVID-19 vaccines. Here, we systemically assess the safety and efficacy of COVID-19 vaccines, including the possible complications and different effects on pregnant women, the elderly, people with immune diseases and acquired immunodeficiency syndrome (AIDS), transplant recipients, and cancer patients. Based on the current analysis, governments and relevant agencies are recommended to continue to advance the vaccine immunization process. Simultaneously, special attention should be paid to the health status of the vaccines, timely treatment of complications, vaccine development, and ensuring the lives and health of patients. In addition, available measures such as mix-and-match vaccination, developing new vaccines like nanoparticle vaccines, and optimizing immune adjuvant to improve vaccine safety and efficacy could be considered.


Assuntos
Vacinas contra COVID-19 , Idoso , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/uso terapêutico , Feminino , Humanos , Gravidez , Subunidades Proteicas , SARS-CoV-2/genética , Vacinas de Partículas Semelhantes a Vírus
6.
J Clin Neurosci ; 99: 35-43, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35240473

RESUMO

BACKGROUND: Sufficient understanding of the systemic inflammatory response after stroke will make the therapeutic strategy targeting inflammation more feasible. Here, we aimed to identify the globally alterations of circulating cytokines in super-acute ischemic stroke (AIS). METHODS: A broad panel of 65 cytokines was measured in the plasma of twenty-eight AIS patients within 6 h after stroke onset (n = 28), cerebral hemorrhagic patients (n = 28) and healthy controls (n = 18). The diagnostic power of the candidate cytokines and their relationship with the number of lymphocytes and neutrophils were analyzed by receiver operating characteristic (ROC) and spearman rank correlation respectively. RESULTS: The expression level of plasma IL-1beta, IL-2, IL-2R, IL-5, IL-10, CD40L, HGF, MIP-3alpha and MMP-1 were obviously up-regulated, while IL-16 was down-regulated in AIS patients compared to healthy controls. Among them, IL-2R, IL-10, IL-16, MIP-3alpha, and MMP-1 were specially altered in AIS patients, while IL-1beta, IL-2, IL-5, CD40L and HGF were elevated simultaneously in AIS and hemorrhagic stroke patients. Interestingly, IL-6 and TNF-beta were found to be key facytors among the 65 cytokines to distinguish hemorrhage from ischemia. Furthermore, IL-1beta, IL-16, CD40L and HGF were obviously correlated with the number of lymphocytes, and IL-1beta and IL-16 were significantly associated with the number of neutrophils in AIS patients. These results suggest that lymphocytes and neutrophils associated inflammation may play a pivotal role in AIS. CONCLUSIONS: Importantly, except for some mutual pathological processes, AIS and hemorrhage had their own distinctive pathogenesis, and transformation of this knowledge to further research may provide novel treatment strategy for AIS.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Isquemia Encefálica/complicações , Ligante de CD40 , Citocinas , Humanos , Inflamação/complicações , Interleucina-10 , Interleucina-16 , Interleucina-2 , Interleucina-5 , Metaloproteinase 1 da Matriz , Acidente Vascular Cerebral/complicações
7.
CNS Neurosci Ther ; 28(6): 953-963, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35322553

RESUMO

AIMS: Inflammatory processes induced by leukocytes are crucially involved in the pathophysiology of acute ischemic stroke. This study aimed to elucidate the inflammatory mechanism of long non-coding RNA (lncRNA) H19-mediated regulation of C1q and tumor necrosis factor 6 (C1QTNF6) by sponging miR-29b in leukocytes during ischemic stroke. METHODS: H19 and miR-29b expression in leukocytes of patients with ischemic stroke and rats with middle cerebral artery occlusion were measured by real-time polymerase chain reaction. H19 siRNA and miR-29b antagomir were used to knock down H19 and miR-29b, respectively. We performed in vivo and in vitro experiments to determine the impact of H19 and miR-29b on C1QTNF6 expression in leukocytes after ischemic injury. RESULTS: H19 and C1QTNF6 upregulation, as well as miR-29b downregulation, was detected in leukocytes of patients with stroke. Moreover, miR-29b could bind C1QTNF6 mRNA and repress its expression, while H19 could sponge miR-29b to maintain C1QTNF6 expression. C1QTNF6 overexpression promoted the release of IL-1ß and TNF-α in leukocytes, further exacerbated blood-brain barrier disruption, and aggravated the cerebral ischemic injury. CONCLUSIONS: Our findings confirm that H19 promotes leukocyte inflammation by targeting the miR-29b/C1QTNF6 axis in cerebral ischemic injury.


Assuntos
AVC Isquêmico , MicroRNAs , RNA Longo não Codificante , Animais , Colágeno , Humanos , Inflamação/genética , Inflamação/metabolismo , Leucócitos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Ratos , Fator de Necrose Tumoral alfa
8.
Cytotherapy ; 24(4): 393-404, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34863626

RESUMO

BACKGROUND AIMS: Given their low immunogenicity, immunoregulatory effects and multiple differentiation capacity, mesenchymal stromal cells (MSCs) have the potential to be used for "off-the-shelf" cell therapy to treat various diseases. However, the allorejection of MSCs indicates that they are not fully immune-privileged. In this study, the authors investigated the immunogenicity of human adipose-derived MSCs (Ad-MSCs) and identified potential immunogenic molecules. METHODS: To evaluate the immunogenicity of human Ad-MSCs in vivo, cells were transplanted into humanized mice (hu-mice), then T-cell infiltration and clearance of human Ad-MSCs were observed by immunofluorescence and bioluminescence imaging. One-way mixed lymphocyte reaction and flow cytometry were performed to evaluate the immunogenicity of human Ad-MSCs in vitro. High-throughput T-cell receptor (TCR) repertoire sequencing and mass spectrometry were applied to identified potential immunogenic molecules. RESULTS: The authors observed that allogeneic Ad-MSCs recruited human T cells and caused faster clearance in hu-mice than non-humanized NOD.Cg-Prkdcscid IL2rgtm1Wjl/SzJ (NSG) mice. The proliferation and activation of T cells were significantly enhanced during in vitro co-culture with human Ad-MSCs. In addition, the level of HLA-II expression on human Ad-MSCs was dramatically increased after co-culture with human peripheral blood mononuclear cells (PBMCs). High-throughput sequencing was applied to analyze the TCR repertoire of the Ad-MSC-recruited T cells to identify dominant TCR CDR3 sequences. Using synthesized TCR CDR3 peptides, the authors identified several potential immunogenic candidates, including alpha-enolase (ENO1). The ENO1 expression level of Ad-MSCs significantly increased after co-culture with PBMCs, whereas ENO1 inhibitor (ENOblock) treatment decreased the expression level of ENO1 and Ad-MSC-induced proliferation of T cells. CONCLUSIONS: The authors' findings improve the understanding of the immunogenicity of human Ad-MSCs and provide a theoretical basis for the safe clinical application of allogeneic MSC therapy.


Assuntos
Biomarcadores Tumorais , Proteínas de Ligação a DNA , Transplante de Células-Tronco Mesenquimais , Fosfopiruvato Hidratase , Proteínas Supressoras de Tumor , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Animais , Células Cultivadas , Humanos , Leucócitos Mononucleares/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Fosfopiruvato Hidratase/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Transplante Homólogo
9.
Front Neurosci ; 15: 738576, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34539341

RESUMO

Despite the recent interest in plasma microRNA (miRNA) biomarkers in acute ischemic stroke patients, there is limited knowledge about the miRNAs directly related to stroke itself due to the multiple complications in patients, which has hindered the research progress of biomarkers and therapeutic targets of ischemic stroke. Therefore, in this study, we compared the differentially expressed miRNA profiles in the plasma of three rhesus monkeys pre- and post-cerebral ischemia. After cerebral ischemia, Rfam sequence category revealed increased ribosomic RNA (rRNA) and decreased transfer RNAs (tRNAs) in plasma. Of the 2049 miRNAs detected after cerebral ischemia, 36 were upregulated, and 76 were downregulated (fold change ≥2.0, P < 0.05). For example, mml-miR-191-5p, miR-421, miR-409-5p, and let-7g-5p were found to be significantly overexpressed, whereas mml-miR-128a-5p_R - 2, miR-431_R - 1, and let-7g-3p_1ss22CT were significantly downregulated. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses revealed that these differentially expressed miRNAs were implicated in the regulation of ubiquitin-mediated proteolysis and signaling pathways in cancer, glioma, chronic myeloid leukemia, and chemokine signaling. miRNA clustering analysis showed that mml-let-7g-5p and let-7g-3p_1ss22CT, which share three target genes [RB1-inducible coiled-coil 1 (RB1CC1), G-protein subunit γ 5 (GNG5), and chemokine (C-X-C motif) receptor 4 (CXCR4)], belong to one cluster, were altered in opposite directions following ischemia. These data suggest that circulating mml-let-7g may serve as a therapeutic target for ischemic stroke.

10.
Neurochem Int ; 148: 105072, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34058282

RESUMO

Central nervous system (CNS) disorders are some of the most complex and challenging diseases because of the intricate structure and functions of the CNS. Long non-coding RNA (LncRNA) H19, which had been mistaken for "transcription noise" previously, has now been found to be closely related to the development and homeostasis of the CNS. Several recent studies indicate that it plays an important role in the pathogenesis, treatment, and even prognosis of CNS disorders. LncRNA H19 is correlated with susceptibility to various CNS disorders such as intracranial aneurysms, ischemic stroke, glioma, and neuroblastoma. Moreover, it participates in the pathogenesis of CNS disorders by regulating transcription, translation, and signaling pathways, suggesting that it is a promising biomarker and therapeutic target for these disorders. This article reviews the functions and mechanisms of lncRNA H19 in various CNS disorders, including cerebral ischemia, cerebral hemorrhage, glioma, pituitary adenoma, neuroblastoma, Parkinson's disease, Alzheimer's disease, traumatic spinal cord injury, neuropathic pain, and temporal lobe epilepsy, to provide a theoretical basis for further research on the role of lncRNA H19 in CNS disorders.


Assuntos
Doenças do Sistema Nervoso Central/genética , RNA Longo não Codificante/genética , Animais , Biomarcadores , Doenças do Sistema Nervoso Central/fisiopatologia , Humanos , RNA Longo não Codificante/efeitos dos fármacos , RNA Longo não Codificante/fisiologia
11.
Stem Cell Res Ther ; 12(1): 176, 2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33712067

RESUMO

BACKGROUND: Obesity has received increasing attention because of its widespread worldwide occurrence and many threats to health. Human adipose-derived mesenchymal stem cells (hADSCs) are a critical source of adipocytes. Long noncoding RNAs (lncRNAs) play pivotal roles in cell fate determination and differentiation. The objective of the present study was to identify and investigate the function and regulatory mechanism of lncRNAs on adipogenic differentiation of hADSCs. METHODS: We used lncRNA arrays to identify the prominent differentially expressed lncRNAs before and after hADSC adipogenic differentiation and verified their biological function through antisense oligonucleotide knockdown or lentivirus overexpression. The adipogenic differentiation of hADSCs was assessed by oil red O staining as well as the mRNA and protein levels of adipogenic marker genes through qRT-PCR and western blot. Bioinformatic tool LncPro and immunofluorescence was performed to uncover the interaction between lnc13728 and ZBED3. WNT/ß-catenin signaling pathway was evaluated by western blot and immunofluorescence. RESULTS: The lncRNA arrays showed that lnc13728 expression was significantly upregulated after hADSC adipogenic differentiation and was correlated positively with the expression of the adipogenesis-related genes in human adipose tissue. Lnc13728 knockdown in hADSCs suppressed the expression of the adipogenesis-related genes at both mRNA and protein level and weakened lipid droplet production. Accordingly, lnc13728 overexpression enhanced hADSC adipogenic differentiation. Beyond that, lnc13728 co-localized with ZBED3 in the cytoplasm and regulated its expression positively. Downregulating ZBED3 had a negative effect on adipogenic differentiation, while the expression of WNT/ß-catenin signaling pathway-related proteins was upregulated. CONCLUSIONS: Lnc13728 promotes hADSC adipogenic differentiation possibly by positively regulating the expression of ZBED3 which plays a role in inhibiting the WNT/ß-catenin pathway.


Assuntos
Adipogenia , Células-Tronco Mesenquimais , Adipogenia/genética , Diferenciação Celular , Proteínas de Ligação a DNA , Regulação para Baixo , Humanos , Células-Tronco Mesenquimais/metabolismo , Fatores de Transcrição , Via de Sinalização Wnt , beta Catenina/genética , beta Catenina/metabolismo
12.
Aging Dis ; 11(2): 216-228, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32257537

RESUMO

A coronavirus (HCoV-19) has caused the novel coronavirus disease (COVID-19) outbreak in Wuhan, China. Preventing and reversing the cytokine storm may be the key to save the patients with severe COVID-19 pneumonia. Mesenchymal stem cells (MSCs) have been shown to possess a comprehensive powerful immunomodulatory function. This study aims to investigate whether MSC transplantation improves the outcome of 7 enrolled patients with COVID-19 pneumonia in Beijing YouAn Hospital, China, from Jan 23, 2020 to Feb 16, 2020. The clinical outcomes, as well as changes of inflammatory and immune function levels and adverse effects of 7 enrolled patients were assessed for 14 days after MSC injection. MSCs could cure or significantly improve the functional outcomes of seven patients without observed adverse effects. The pulmonary function and symptoms of these seven patients were significantly improved in 2 days after MSC transplantation. Among them, two common and one severe patient were recovered and discharged in 10 days after treatment. After treatment, the peripheral lymphocytes were increased, the C-reactive protein decreased, and the overactivated cytokine-secreting immune cells CXCR3+CD4+ T cells, CXCR3+CD8+ T cells, and CXCR3+ NK cells disappeared in 3-6 days. In addition, a group of CD14+CD11c+CD11bmid regulatory DC cell population dramatically increased. Meanwhile, the level of TNF-α was significantly decreased, while IL-10 increased in MSC treatment group compared to the placebo control group. Furthermore, the gene expression profile showed MSCs were ACE2- and TMPRSS2- which indicated MSCs are free from COVID-19 infection. Thus, the intravenous transplantation of MSCs was safe and effective for treatment in patients with COVID-19 pneumonia, especially for the patients in critically severe condition.

13.
Cell Death Dis ; 11(3): 158, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-32123161

RESUMO

Nowadays, immune diseases are a large burden in healthcare. Mesenchymal stem cells (MSCs) have prominent ability in immunomodulation and have been applicated on treating many immune-related diseases. However, the clinical outcomes can be disparate and sometimes completely counterproductive beyond explanation of cell heterogeneity. The theory of immunomodulation plasticity in MSCs has then emerged to explain that MSCs can be induced into proinflammatory MSC1 or anti-inflammatory MSC2 responding to different immune environment. It would be safer and more efficient if we could induce MSCs into a certain immune phenotype, in most cases MSC2, prior to medical treatment. In this study, we screened and identified a classical FDA-approved drug, chlorzoxazone (CZ). Unlike traditional method induced by IFN-γ, CZ can induce MSC into MSC2 phenotype and enhance the immunosuppressive capacity without elevation of immunogenicity of MSCs. CZ-treated MSCs can better inhibit T cells activation and proliferation, promote expression of IDO and other immune mediators in vitro, and alleviate inflammatory infiltration and tissue damage in acute kidney injury rat model more effectively. Moreover, we discovered that CZ modulates phosphorylation of transcriptional factor forkhead box O3 (FOXO3) independent of classical AKT or ERK signaling pathways, to promote expression of downstream immune-related genes, therefore contributing to augmentation of MSCs immunosuppressive capacity. Our study established a novel and effective approach to induce MSC2, which is ready for clinical application.


Assuntos
Clorzoxazona/farmacologia , Proteína Forkhead Box O3/efeitos dos fármacos , Inflamação/tratamento farmacológico , Células-Tronco Mesenquimais/efeitos dos fármacos , Animais , Proliferação de Células/efeitos dos fármacos , Clorzoxazona/metabolismo , Humanos , Inflamação/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/metabolismo , Preparações Farmacêuticas/metabolismo , Ratos Wistar
14.
Front Cell Infect Microbiol ; 10: 593674, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33520734

RESUMO

Symptomatic hepatitis E virus (HEV) infection is sporadic, and usually occurs in a limited number of infected patients, which hinders the investigation of risk factors for clinical outcomes in patients with acute HEV infection. A retrospective cohort study enrolling 1913 patients with symptomatic acute hepatitis E in Beijing 302 Hospital from January 1, 2001 to December 31, 2018 was conducted. The baseline characteristics, clinical features and laboratory data of these HEV infection cases were analyzed. Albumin (ALB), platelet (PLT), alanine aminotransferase (ALT), total bilirubin (T-BiL), international normalized ratio (INR) and serum creatinine (SCR) levels, along with the model for end-stage liver disease (MELD) score, hospitalization days, co-morbidity number and mortality were taken as major parameters for comparing the clinical manifestations in our study. We found that not all pre-existing chronic liver diseases exacerbate clinical manifestations of acute hepatitis E. Alcoholic hepatitis, fatty liver hepatitis, hepatic cyst, drug-induced hepatitis and hepatocellular carcinoma were not significantly associated with mortality of HEV patients. Among all of the comorbidities, end-stage liver diseases (ESLDs, including ascites, cirrhosis, hepatic coma and hepatorenal syndrome), respiratory tract infection and chronic kidney diseases (CKDs, including renal insufficiency and renal failure) were found to remarkably increase the mortality of patients with symptomatic HEV infection. Furthermore, the severity evaluation indexes (SEI), such as MELD score, duration of hospital stay, and co-morbidity number in HEV patients with underlying comorbidities were much worse than that of their counterparts without relevant comorbidities.


Assuntos
Doença Hepática Terminal , Hepatite E , Insuficiência Renal Crônica , Infecções Respiratórias , Hepatite E/complicações , Hepatite E/epidemiologia , Humanos , Prognóstico , Estudos Retrospectivos , Índice de Gravidade de Doença
15.
Cell Death Dis ; 10(11): 805, 2019 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-31645544

RESUMO

Adolescent idiopathic scoliosis (AIS) is a complex, three-dimensional deformity of the spine that commonly occurs in pubescent girls. Decreased osteogenic differentiation and aberrant melatonin signalling have been demonstrated in mesenchymal stem cells (MSCs) from AIS patients and are implicated in the pathogenesis of AIS. However, the molecular mechanisms underlying these abnormal cellular features remain largely unknown. Our previous work comparing gene expression profiles between MSCs from AIS patients and healthy controls identified 1027 differentially expressed genes. In the present study, we focused on one of the most downregulated genes, SPRY4, in the MAPK signalling pathway and examined its role in osteogenic differentiation. We found that SPRY4 is markedly downregulated in AIS MSCs. Knockdown of SPRY4 impaired differentiation of healthy MSCs to osteoblasts, while SPRY4 overexpression in AIS MSCs enhanced osteogenic differentiation. Furthermore, melatonin treatment boosted osteogenic differentiation, whereas SPRY4 ablation ablated the promotional effects of melatonin. Moreover, SPRY4 was upregulated by melatonin exposure and contributed to osteogenic differentiation and melatonin response in a MEK-ERK1/2 dependent manner. Thus, loss of SPRY4 in bone marrow derived-MSCs results in reduced osteogenic differentiation, and these defects are further aggravated under the influence of melatonin. Our findings provide new insights for understanding the role of melatonin in AIS aetiology and highlight the importance of MSCs in AIS pathogenesis.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Melatonina/metabolismo , Células-Tronco Mesenquimais/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Escoliose/metabolismo , Escoliose/patologia , Adolescente , Medula Óssea/metabolismo , Estudos de Casos e Controles , Diferenciação Celular/fisiologia , Regulação para Baixo , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Células-Tronco Mesenquimais/patologia , Proteínas do Tecido Nervoso/genética , Osteogênese , Escoliose/genética , Transcriptoma
16.
Cell Death Dis ; 10(7): 492, 2019 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-31235689

RESUMO

The generation of definitive endoderm (DE) cells in sufficient numbers is a prerequisite for cell-replacement therapy for liver and pancreatic diseases. Previously, we reported that human adipose-derived mesenchymal stem cells (hAMSCs) can be induced to DE lineages and subsequent functional cells. Clarifying the regulatory mechanisms underlying the fate conversion from hAMSCs to DE is helpful for developing new strategies to improve the differentiation efficiency from hAMSCs to DE organs. Long noncoding RNAs (lncRNAs) have been shown to play pivotal roles in developmental processes, including cell fate determination and differentiation. In this study, we profiled the expression changes of lncRNAs and found that antidifferentiation noncoding RNA (ANCR) was downregulated during the differentiation of both hAMSCs and embryonic stem cells (ESCs) to DE cells. ANCR knockdown resulted in the elevated expression of DE markers in hAMSCs, but not in ESCs. ANCR overexpression reduced the efficiency of hAMSCs to differentiate into DE cells. Inhibitor of DNA binding 2 (ID2) was notably downregulated after ANCR knockdown. ID2 knockdown enhanced DE differentiation, whereas overexpression of ID2 impaired this process in hAMSCs. ANCR interacts with RNA-binding polypyrimidine tract-binding protein 1 (PTBP1) to facilitate its association with ID2 mRNA, leading to increased ID2 mRNA stability. Thus, the ANCR/PTBP1/ID2 network restricts the differentiation of hAMSCs toward DE. Our work highlights the inherent discrepancies between hAMSCs and ESCs. Defining hAMSC-specific signaling pathways might be important for designing optimal differentiation protocols for directing hAMSCs toward DE.


Assuntos
Diferenciação Celular/fisiologia , Endoderma/citologia , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Proteína 2 Inibidora de Diferenciação/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , RNA Longo não Codificante/metabolismo , Células-Tronco Adultas/citologia , Células-Tronco Adultas/metabolismo , Western Blotting , Diferenciação Celular/genética , Linhagem Celular , Células Cultivadas , Endoderma/metabolismo , Imunofluorescência , Ribonucleoproteínas Nucleares Heterogêneas/genética , Humanos , Proteína 2 Inibidora de Diferenciação/genética , Espectrometria de Massas , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Estabilidade de RNA/genética , Estabilidade de RNA/fisiologia , RNA Longo não Codificante/genética
17.
Aging Dis ; 9(6): 1058-1073, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30574418

RESUMO

As the population ages, the medical and socioeconomic impact of age-related bone disorders will further increase. An imbalance between osteogenesis and adipogenesis of mesenchymal stem cells (MSCs) can lead to various bone and metabolic diseases such as osteoporosis. Thus, understanding the molecular mechanisms underlying MSC osteogenic and adipogenic differentiation is important for the discovery of novel therapeutic paradigms for these diseases. miR-10b has been widely reported in tumorigenesis, cancer invasion and metastasis. However, the effects and potential mechanisms of miR-10b in the regulation of MSC adipogenic and osteogenic differentiation have not been explored. In this study, we found that the expression of miR-10b was positively correlated with bone formation marker genes ALP, RUNX2 and OPN, and negatively correlated with adipogenic markers CEBPα, PPARγ and AP2 in clinical osteoporosis samples. Overexpression of miR-10b enhanced osteogenic differentiation and inhibited adipogenic differentiation of human adipose-derived mesenchymal stem cells (hADSCs) in vitro, whereas downregulation of miR-10b reversed these effects. Furthermore, miR-10b promoted ectopic bone formation in vivo. Target prediction and dual luciferase reporter assays identified SMAD2 as a potential target of miR-10b. Silencing endogenous SMAD2 expression in hADSCs enhanced osteogenesis but repressed adipogenesis. Pathway analysis indicated that miR-10b promotes osteogenic differentiation and bone formation via the TGF-ß signaling pathway, while suppressing adipogenic differentiation may be primarily mediated by other pathways. Taken together, our findings imply that miR-10b acts as a critical regulator for balancing osteogenic and adipogenic differentiation of hADSCs by repressing SMAD2 and partly through the TGF-ß pathway. Our study suggests that miR-10b is a novel target for controlling bone and metabolic diseases.

18.
Stem Cells Dev ; 27(9): 600-611, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29649414

RESUMO

Osteoporosis is characterized by deterioration of bone microarchitecture and low bone mass. One of the primary causes of osteoporosis is the decrease in the osteogenic differentiation of mesenchymal stem cells (MSCs). Tissue engineering therapy with genetically modified MSCs has attracted much attention in the study of bone regeneration. In this study, we found that the expression level of miR-450b was upregulated during osteogenic differentiation of human adipose-derived mesenchymal stem cells (hADSCs). To explore the effect of miR-450b on the osteogenesis of hADSCs, we performed a series of gain- and loss-of-function analyses and demonstrated that miR-450b not only promoted the process of hADSC differentiation to osteoblasts in vitro but also enhanced ectopic bone formation in vivo. Bone morphogenetic protein 3 (BMP3), the most abundant BMP member in bone, was identified as a direct target of miR-450b. Downregulation of the endogenous expression of BMP3 could mimic the effect of miR-450b upregulation on the osteogenic differentiation of hADSCs. Overall, our study first demonstrated that a novel microRNA miR-450b was essential for hADSC differentiation, which could promote osteogenic differentiation in vitro and enhance bone formation in vivo by directly suppressing BMP3.


Assuntos
Proteína Morfogenética Óssea 3/metabolismo , Diferenciação Celular/genética , MicroRNAs/metabolismo , Osteogênese/genética , Tecido Adiposo/citologia , Adulto , Sequência de Bases , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , Pessoa de Meia-Idade , Ossificação Heterotópica/patologia , Adulto Jovem
19.
Mol Med Rep ; 16(6): 9331-9336, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29039554

RESUMO

The mechanism of steroid-associated femoral head necrosis remains unclear. The present study investigated the role of microRNA-23a-3p (miR-23a-3p) in the incidence of osteonecrosis in a rat model. An miR-23a-3p mimic, an inhibitor and a negative control were transfected into bone mesenchymal stem cells using a lentiviral vector, and then injected into the steroid-induced femoral head necrosis model. Osteonecrosis incidence was assessed by micro computed tomography and histopathology. Low-density lipoprotein receptor-related protein 5 (LRP-5) expression was assessed by immunohistochemistry. The results demonstrated the incidence of osteonecrosis decreased in the miR-23a-3p inhibitor group compared with the miR-23a-3p mimic group (18.2% vs. 75%; P<0.05). The ratio of bone volume/total volume and trabecular thickness were significantly increased in the miR-23a-3p inhibitor group compared with the miR-23a mimic group. The expression level of LRP-5 was higher in the miR-23a-3p inhibitor group. The present study indicated that miR may provide a novel and alternative approach for understanding the mechanism underlying steroid-associated necrosis of the femoral head.


Assuntos
MicroRNAs/metabolismo , Osteonecrose/patologia , Osteonecrose/terapia , Animais , Densidade Óssea , Osso Esponjoso/diagnóstico por imagem , Osso Esponjoso/patologia , Modelos Animais de Doenças , Cabeça do Fêmur/diagnóstico por imagem , Cabeça do Fêmur/patologia , Incidência , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/antagonistas & inibidores , Ratos Sprague-Dawley , Microtomografia por Raio-X
20.
Int J Biochem Cell Biol ; 72: 55-62, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26774446

RESUMO

Emerging evidence indicates that microRNAs (miRNA, or miR) play vital roles in regulating osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs). Elucidation of the molecular mechanisms that govern BMSCs osteogenic differentiation is of paramount importance for improving the treatment of bone-related diseases. In our current study, we investigated the role of miR-23a in BMSCs osteogenesis. Our results revealed that miR-23a was significantly downregulated during osteogenic differentiation. Overexpression of miR-23a inhibited osteogenic differentiation of hBMSCs in vitro, whereas downregulation of miR-23a enhanced the process. Target prediction analysis and dual luciferase reporter assays confirmed that low-density lipoprotein (LDL)-receptor-related protein 5 (LRP5) was a direct target of miR-23a. Furthermore, knockdown of LRP5 inhibited osteogenic differentiation of hBMSCs, similar to the effect observed in upregulation miR-23a. Our data indicate that miR-23a plays an inhibitory role in osteogenic differentiation of hBMSCs, which may act by targeting LRP5.


Assuntos
Diferenciação Celular/genética , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Células-Tronco Mesenquimais/citologia , MicroRNAs/genética , Osteogênese/genética , Adulto , Sequência de Bases , Regulação para Baixo/genética , Feminino , Técnicas de Silenciamento de Genes , Humanos , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/deficiência , Masculino , Células-Tronco Mesenquimais/metabolismo , Fenótipo , Via de Sinalização Wnt/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA