Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 333: 118407, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38824979

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Taohong Siwu Decoction (TSD), a classic traditional Chinese medicine formula, is used for the treatment of vascular diseases, including vascular dementia (VD). However, the mechanisms remain unclear. AIM OF STUDY: This study aimed to investigate whether TSD has a positive effect on cognitive impairment in VD rats and to confirm that the mechanism of action is related to the Endoplasmic Reticulum stress (ERs) and cell apoptosis signaling pathway. MATERIALS AND METHODS: A total of 40 male adult Sprague-Dawley rats were divided into four groups: sham-operated group (Sham), the two-vessel occlusion group (2VO), the 2VO treated with 4.5 g/kg/d TSD group (2VO + TSD-L), the 2VO treated with 13.5 g/kg/d TSD group (2VO + TSD-H). The rats underwent either 2VO surgery or sham surgery. Postoperative TSD treatment was given for 4 consecutive weeks. Behavioral tests were initiated at the end of gastrulation. Open-field test (OFT) was used to detect the activity level. The New Object Recognition test (NOR) was used to test long-term memory. The Morris water maze (MWM) test was used to examine the foundation of spatial learning and memory. As a final step, the hippocampus was taken for molecular testing. The protein levels of GRP78 (Bip), p-PERK, PERK, IRE1α, p-IRE1α, ATF6, eIF2α, p-eIF2α, ATF4, XBP1, Bcl-2 and Bax were determined by Western blot. Immunofluorescence visualizes molecular expression. RESULTS: In the OFT, residence time in the central area was significantly longer in both TSD treatment groups compared to the 2VO group. In the NOR, the recognition index was obviously elevated in both TSD treatment groups. The 2VO group had a significantly longer escape latency and fewer times in crossing the location of the platform compared with the Sham group in MWM. TSD treatment reversed this notion. Pathologically, staining observations confirmed that TSD inhibited hippocampal neuronal loss and alleviated the abnormal reduction of the Nissl body. In parallel, TUNEL staining illustrated that TSD decelerated neuronal apoptosis. Western Blot demonstrated that TSD reduces the expression of ERs and apoptotic proteins. CONCLUSION: In this study, the significant ameliorative effect on cognitive impairment of TSD has been determined by comparing the behavioral data of the 4 groups of rats. Furthermore, it was confirmed that this effect of TSD was achieved by suppressing the ERs-mediated apoptosis signaling pathway.

2.
Rejuvenation Res ; 26(2): 57-67, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36734410

RESUMO

Ischemia stroke is thought to be one of the vascular risks associated with neurodegenerative diseases, such as Alzheimer's disease (AD). Hydroxysafflor yellow A (HSYA) has been reported to protect against stroke and AD, while the underlying mechanism remains unclear. In this study, SH-SY5Y cell model treated with oxygen-glucose deprivation/reperfusion (OGD/R) was used to explore the potential mechanism of HSYA. Results from cell counting kit-8 (CCK-8) showed that 10 µM HSYA restored the cell viability after OGD 2 hours/R 24 hours. HSYA reduced the levels of malondialdehyde and reactive oxygen species, while improved the levels of superoxide dismutase and glutathione peroxidase. Furthermore, apoptosis was inhibited, and the expression of brain-derived neurotrophic factor was improved after HSYA treatment. In addition, the expression levels of amyloid-ß peptides (Aß) and BACE1 were decreased by HSYA, as well as the expression levels of binding immunoglobulin heavy chain protein, PKR-like endoplasmic reticulum (ER) kinase pathway, and activating transcription factor 6 pathway, whereas the expression level of protein disulfide isomerase was increased. Based on these results, HSYA might reduce Aß toxicity after OGD/R by interfering with apoptosis, oxidation, and neurotrophic factors, as well as relieving ER stress.


Assuntos
Chalcona , Neuroblastoma , Fármacos Neuroprotetores , Traumatismo por Reperfusão , Acidente Vascular Cerebral , Humanos , Oxigênio/metabolismo , Fármacos Neuroprotetores/farmacologia , Secretases da Proteína Precursora do Amiloide/farmacologia , Glucose/metabolismo , Ácido Aspártico Endopeptidases/farmacologia , Quinonas/farmacologia , Apoptose , Chalcona/farmacologia , Traumatismo por Reperfusão/metabolismo , Reperfusão , Estresse do Retículo Endoplasmático
3.
Cell Mol Biol (Noisy-le-grand) ; 68(7): 160-164, 2022 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-36495502

RESUMO

It has been noted that temozolomide resistance occurs in a number of malignancies, including glioma, although the underlying cause of this is unknown. The goal of the study in vivo investigation to show that increased CD147 expression in glioma cells is a factor in their resistance to the chemotherapy drug temozolomide. Proliferation assays, TUNEL assays, reactive oxygen species assays, protein degradation assays, immunohistochemistry, Western blotting, quantitative polymerase chain reactions, and tumorigenicity assays were all carried out. Using the human protein atlas databases, the expression levels of CD147 in different kinds of malignancies were examined. For immunohistochemistry, a total of 7, 12, 19, 15, and 16 glioma samples were taken from para-carcinoma tissue, representing stage I, stage II, stage III, and stage IV gliomas, respectively. The expression of CD147 proteins is correlated with the tumor's aggressiveness. Cell development was slowed by suppressing the expression of the CD147 protein. The expression of the CD147 protein contributed to the emergence of temozolomide resistance. Expression of the CD147 protein reduced mRNA expression. The growth-inhibitory impact of temozolomide on glioma cells was enhanced by the suppression of CD147 protein.  Nuclear factor E2-related factor 2 expression and CD147 protein expression showed a significant reciprocal connection with each other (p 0.0001, r2 = 0.3254). In glioma, resistance to temozolomide is due to overexpression of CD147 protein and induction of nuclear factor E2-related factor 2.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Glioma/tratamento farmacológico , Glioma/genética , Glioma/metabolismo , Imuno-Histoquímica , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Apoptose
4.
Bioorg Chem ; 115: 105172, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34303898

RESUMO

Two series of tetrahydrocarbazole derivatives have been designed and synthesized based on ZG02, a promising candidate developed in our previous studies. The newly prepared compounds were screened for glucose consumption activity in HepG2 cell lines. Aza-tetrahydrocarbazole compound 12b showed the most potent hypoglycemic activity with a 45% increase in glucose consumption when compared to the solvent control, which had approximately 1.2-fold higher activity than the positive control compounds (metformin and ZG02). An investigation of the potential mechanism indicated that 12b may exhibit hypoglycemic activity via activation of the AMPK pathway. Metabolic stability assays revealed that 12b showed good stability profiles in both artificial gastrointestinal fluids and blood plasma from SD rats. An oral glucose tolerance test (OGTT) was performed and the results further confirmed that 12b was a potent hypoglycemic agent.


Assuntos
Carbazóis/química , Desenho de Fármacos , Hipoglicemiantes/síntese química , Proteínas Quinases Ativadas por AMP/química , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Sítios de Ligação , Carbazóis/farmacologia , Carbazóis/uso terapêutico , Estabilidade de Medicamentos , Glucose/metabolismo , Teste de Tolerância a Glucose , Meia-Vida , Células Hep G2 , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Simulação de Dinâmica Molecular , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade
5.
Cancer Sci ; 111(5): 1567-1581, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32133742

RESUMO

The histone demethylase lysine-specific demethylase 4A (KDM4A) is reported to be overexpressed and plays a vital in multiple cancers through controlling gene expression by epigenetic regulation of H3K9 or H3K36 methylation marks. However, the biological role and mechanism of KDM4A in prostate cancer (PC) remain unclear. Herein, we reported KDM4A expression was upregulation in phosphatase and tensin homolog knockout mouse prostate tissue. Depletion of KDM4A in PC cells inhibited their proliferation and survival in vivo and vitro. Further studies reveal that USP1 is a deubiquitinase that regulates KDM4A K48-linked deubiquitin and stability. Interestingly, we found c-Myc was a key downstream effector of the USP1-KDM4A/androgen receptor axis in driving PC cell proliferation. Notably, upregulation of KDM4A expression with high USP1 expression was observed in most prostate tumors and inhibition of USP1 promotes PC cells response to therapeutic agent enzalutamide. Our studies propose USP1 could be an anticancer therapeutic target in PC.


Assuntos
Antineoplásicos/uso terapêutico , Inibidores Enzimáticos/uso terapêutico , Histona Desmetilases com o Domínio Jumonji/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Proteases Específicas de Ubiquitina/antagonistas & inibidores , Animais , Antineoplásicos/farmacologia , Benzamidas , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Inibidores Enzimáticos/farmacologia , Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Histona Desmetilases com o Domínio Jumonji/genética , Masculino , Camundongos , Camundongos Mutantes , Nitrilas , PTEN Fosfo-Hidrolase/deficiência , Feniltioidantoína/análogos & derivados , Feniltioidantoína/farmacologia , Feniltioidantoína/uso terapêutico , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Ligação Proteica/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-myc/genética , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteases Específicas de Ubiquitina/genética , Proteases Específicas de Ubiquitina/metabolismo , Ubiquitinação/efeitos dos fármacos
6.
J Agric Food Chem ; 60(25): 6399-407, 2012 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-22670709

RESUMO

Prostate cancer is one of the leading causes of cancer death in men in Western countries. Epidemiological studies have linked the consumption of fruits and vegetables to a reduced risk of prostate cancer, and small fruits are particularly rich sources of many active phytochemical stilbenes, such as pterostilbene. As a constituent of small fruits such as grapes, berries, and their products, pterostilbene is under intense investigation as a cancer chemopreventive agent. Using the p53 wild type LNCaP and p53 null PC3 cells, we found that treatment with pterostilbene resulted in dose-dependent inhibition of cellular proliferation, which suggested that the interaction of pterostilbene with the p53 might not fully explain its inhibitory effect on proliferation. In this study, we found that pterostilbene activated AMPK in both p53 positive and negative human prostate cancer cells. Pterostilbene-activated AMPK decreased the activity and/or expression of lipogenic enzymes, such as fatty acid synthase (FASN) and acetyl-CoA carboxylase (ACC). Interestingly, the resolution between apoptosis and growth arrest following AMPK activation is greatly influenced by p53 status. In p53 positive LNCaP cells, pterostilbene blocked the progression of cell cycle at G1 phase by inducing p53 expression and further up-regulating p21 expression. However, pterostilbene induced apoptosis in p53 negative PC3 cells. Our results suggest that pterostilbene may be a functional chemopreventive agent and that dietary exposure to pterostilbene would be helpful for antiprostate cancer activity.


Assuntos
Ciclo Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Lipogênese/efeitos dos fármacos , Neoplasias da Próstata/fisiopatologia , Proteínas Quinases/metabolismo , Estilbenos/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Linhagem Celular Tumoral , Ativação Enzimática/efeitos dos fármacos , Humanos , Masculino , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/enzimologia , Proteínas Quinases/genética , Proteína Supressora de Tumor p53/genética
7.
Mol Divers ; 16(2): 415-21, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22528272

RESUMO

A series of benzopyrano[3,4-b](N-arylsulfonyl) indole derivatives and benzopyrano[4,3-b](N-arylsulfonyl) indole derivatives were synthesized from 2- or 3-methylindole via intermolecular S( N )2 reaction and subsequent intramolecular palladium-catalyzed aryl-aryl coupling reaction for the first time. It was suggested that, besides using the Fischer cyclization, benzopyrano[4,3-b]indoles and benzopyrano[3,4-b]indoles could also be prepared via intermolecular S( N )2 reaction and sequential intramolecular palladium-catalyzed coupling reaction.


Assuntos
Indóis/síntese química , Paládio/química , Catálise , Ciclização , Indóis/química , Estrutura Molecular
8.
Hepatology ; 56(4): 1331-41, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22505225

RESUMO

UNLABELLED: At least some cancer stem cells (CSCs) display intrinsic drug resistance that may thwart eradication of a malignancy by chemotherapy. We explored the genesis of such resistance by studying mouse models of liver cancer driven by either MYC or the combination of oncogenic forms of activation of v-akt murine thymoma viral oncogene homolog (AKT) and NRAS. A common manifestation of chemoresistance in CSCs is efflux of the DNA-binding dye Hoechst 33342. We found that only the MYC-driven tumors contained a subset of cells that efflux Hoechst 33342. This "side population" (SP) was enriched for CSCs when compared to non-SP tumor cells and exhibited markers of hepatic progenitor cells. The SP cells could differentiate into non-SP tumor cells, with coordinate loss of chemoresistance, progenitor markers, and the enrichment for CSCs. In contrast, non-SP cells did not give rise to SP cells. Exclusion of Hoechst 33342 is mediated by ATP binding cassette drug transporter proteins that also contribute to chemoresistance in cancer. We found that the multidrug resistance gene 1 (MDR1) transporter was responsible for the efflux of Hoechst from SP cells in our MYC-driven model. Accordingly, SP cells and their tumor-initiating subset were more resistant than non-SP cells to chemotherapeutics that are effluxed by MDR1. CONCLUSION: The oncogenotype of a tumor can promote a specific mechanism of chemoresistance that can contribute to the survival of hepatic CSCs. Under circumstances that promote differentiation of CSCs into more mature tumor cells, the chemoresistance can be quickly lost. Elucidation of the mechanisms that govern chemoresistance in these mouse models may illuminate the genesis of chemoresistance in human liver cancer.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Diferenciação Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Células-Tronco Neoplásicas/efeitos dos fármacos , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Western Blotting , Diferenciação Celular/genética , Linhagem Celular Tumoral , Sobrevivência Celular , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Citometria de Fluxo , Humanos , Hidrocortisona/análogos & derivados , Hidrocortisona/farmacologia , Imuno-Histoquímica , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Camundongos , Células-Tronco Neoplásicas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Sensibilidade e Especificidade , Transplante Homólogo
9.
J Agric Food Chem ; 58(6): 3356-65, 2010 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-20166659

RESUMO

Prostate carcinoma is the most frequently diagnosed malignancy and the second leading cause of death of men in the United States. To date, no effective therapeutic treatment allows abrogation of the progression of prostate cancer to more invasive forms. In this study, we identified Saussurea involucrata Kar. et Kir., a rare traditional Chinese medicinal herb, as a potential agent for androgen-independent prostate cancer patients and investigated its biological mechanism as an antineoplastic agent. S. involucrata caused a concentration- and time-dependent inhibition of cell proliferation in human hormone-resistant prostate cancer PC-3 cells. Moreover, in vitro studies in a panel of several types of human cancer cell lines revealed that S. involucrata inhibited cell proliferation with high potency. To evaluate the bioactive compounds, we successively extracted the S. involucrata with fractions of methanol (SI-1), ethyl acetate (SI-2), n-butanol (SI-3), and water (SI-4). Among these extracts, SI-2 contains the most effective bioactivity. SI-2 treatment resulted in significant time-dependent growth inhibition together with G1 phase cell cycle arrest and apoptosis in PC3 cells. In addition, SI-2 treatment strongly induced p21WAF1/CIP and p27KIP1 expression, independent of the p53 pathway, and downregulated expression of cyclin D1 and cyclin-dependent kinase 4 (CDK4). SI-2 treatment increased levels of Bax, cytochrome c, activated caspase-3, and active caspase-9 and decreased Bcl-2 expression level. One of the major targets for the therapy in prostate cancer can be epidermal growth factor receptor (EGFR). SI-2 markedly reduced phosphorylation of EGFR and inhibited activation of AKT and STAT3. Moreover, p.o. administration of SI-2 induced a dose-dependent inhibition of PC-3 tumor growth in vivo. In summary, our study identifies S. involucrata as an effective inhibitor of EGFR signaling in human hormone-resistant prostate cancer PC-3 cells. We suggest that S. involucrata could be developed as an agent for the management of EGFR-positive human cancers.


Assuntos
Regulação para Baixo , Medicamentos de Ervas Chinesas/farmacologia , Receptores ErbB/metabolismo , Hormônios/farmacologia , Extratos Vegetais/farmacologia , Neoplasias da Próstata/metabolismo , Saussurea/química , Transdução de Sinais/efeitos dos fármacos , Animais , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Medicamentos de Ervas Chinesas/administração & dosagem , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Extratos Vegetais/administração & dosagem , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA