Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Med Chem Lett ; 11(3): 358-364, 2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-32184970

RESUMO

We describe the discovery of three structurally differentiated potent and selective MTH1 inhibitors and their subsequent use to investigate MTH1 as an oncology target, culminating in target (in)validation. Tetrahydronaphthyridine 5 was rapidly identified as a highly potent MTH1 inhibitor (IC50 = 0.043 nM). Cocrystallization of 5 with MTH1 revealed the ligand in a Φ-cis-N-(pyridin-2-yl)acetamide conformation enabling a key intramolecular hydrogen bond and polar interactions with residues Gly34 and Asp120. Modification of literature compound TH287 with O- and N-linked aryl and alkyl aryl substituents led to the discovery of potent pyrimidine-2,4,6-triamine 25 (IC50 = 0.49 nM). Triazolopyridine 32 emerged as a highly selective lead compound with a suitable in vitro profile and desirable pharmacokinetic properties in rat. Elucidation of the DNA damage response, cell viability, and intracellular concentrations of oxo-NTPs (oxidized nucleoside triphosphates) as a function of MTH1 knockdown and/or small molecule inhibition was studied. Based on our findings, we were unable to provide evidence to further pursue MTH1 as an oncology target.

2.
Cardiovasc Res ; 107(1): 184-96, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25990311

RESUMO

AIMS: Enhanced cardiac late Na current (late INa) and increased sarcoplasmic reticulum (SR)-Ca(2+)-leak are both highly arrhythmogenic. This study seeks to identify signalling pathways interconnecting late INa and SR-Ca(2+)-leak in atrial cardiomyocytes (CMs). METHODS AND RESULTS: In murine atrial CMs, SR-Ca(2+)-leak was increased by the late INa enhancer Anemonia sulcata toxin II (ATX-II). An inhibition of Ca(2+)/calmodulin-dependent protein kinase II (Autocamide-2-related inhibitory peptide), protein kinase A (H89), or late INa (Ranolazine or Tetrodotoxin) all prevented ATX-II-dependent SR-Ca(2+)-leak. The SR-Ca(2+)-leak induction by ATX-II was not detected when either the Na(+)/Ca(2+) exchanger was inhibited (KBR) or in CaMKIIδc-knockout mice. FRET measurements revealed increased cAMP levels upon ATX-II stimulation, which could be prevented by inhibition of adenylyl cyclases (ACs) 5 and 6 (NKY 80) but not by inhibition of phosphodiesterases (IBMX), suggesting PKA activation via an AC-dependent increase of cAMP levels. Western blots showed late INa-dependent hyperphosphorylation of CaMKII as well as PKA target sites at ryanodine receptor type-2 (-S2814 and -S2808) and phospholamban (-Thr17, -S16). Enhancement of late INa did not alter Ca(2+)-transient amplitude or SR-Ca(2+)-load. However, upon late INa activation and simultaneous CaMKII inhibition, Ca(2+)-transient amplitude and SR-Ca(2+)-load were increased, whereas PKA inhibition reduced Ca(2+)-transient amplitude and load and additionally slowed Ca(2+) elimination. In atrial CMs from patients with atrial fibrillation, inhibition of late INa, CaMKII, or PKA reduced the SR-Ca(2+)-leak. CONCLUSION: Late INa exerts distinct effects on Ca(2+) homeostasis in atrial myocardium through activation of CaMKII and PKA. Inhibition of late INa represents a potential approach to attenuate CaMKII activation and decreases SR-Ca(2+)-leak in atrial rhythm disorders. The interconnection with the cAMP/PKA system further increases the antiarrhythmic potential of late INa inhibition.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cálcio/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Diástole/fisiologia , Átrios do Coração/metabolismo , Retículo Sarcoplasmático/metabolismo , Canais de Sódio/fisiologia , Animais , Fibrilação Atrial/etiologia , AMP Cíclico/análise , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Ativação Enzimática , Humanos , Camundongos , Fosforilação
3.
Am J Physiol Cell Physiol ; 301(3): C577-86, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21677263

RESUMO

Late Na(+) current (I(NaL)) and Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) are both increased in the diseased heart. Recently, CaMKII was found to phosphorylate the Na(+) channel 1.5 (Na(v)1.5), resulting in enhanced I(NaL). Conversely, an increase of I(NaL) would be expected to cause elevation of intracellular Ca(2+) and activation of CaMKII. However, a relationship between enhancement of I(NaL) and activation of CaMKII has yet to be demonstrated. We investigated whether Na(+) influx via Na(v)1.5 leads to CaMKII activation and explored the functional significance of this pathway. In neonatal rat ventricular myocytes (NRVM), treatment with the I(NaL) activators anemone toxin II (ATX-II) or veratridine increased CaMKII autophosphorylation and increased phosphorylation of CaMKII substrates phospholamban and ryanodine receptor 2. Knockdown of Na(v)1.5 (but not Na(v)1.1 or Na(v)1.2) prevented ATX-II-induced CaMKII phosphorylation, providing evidence for a specific role of Na(v)1.5 in CaMKII activation. In support of this view, CaMKII activity was also increased in hearts of transgenic mice overexpressing a gain-of-function Na(v)1.5 mutant (N(1325)S). The effects of both ATX-II and the N(1325)S mutation were reversed by either I(NaL) inhibition (with ranolazine or tetrodotoxin) or CaMKII inhibition (with KN93 or autocamtide 2-related inhibitory peptide). Furthermore, ATX-II treatment also induced CaMKII-Na(v)1.5 coimmunoprecipitation. The same association between CaMKII and Na(v)1.5 was also found in N(1325)S mice, suggesting a direct protein-protein interaction. Pharmacological inhibitions of either CaMKII or I(NaL) also prevented ATX-II-induced cell death in NRVM and reduced the incidence of polymorphic ventricular tachycardia induced by ATX-II in rat perfused hearts. Taken together, these results suggest that a Na(v)1.5-dependent increase in Na(+) influx leads to activation of CaMKII, which in turn phosphorylates Na(v)1.5, further promoting Na(+) influx. Pharmacological inhibition of either CaMKII or Na(v)1.5 can ameliorate cardiac dysfunction caused by excessive Na(+) influx.


Assuntos
Substituição de Aminoácidos/fisiologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Ventrículos do Coração/metabolismo , Miócitos Cardíacos/metabolismo , Canais de Sódio/metabolismo , Sódio/metabolismo , Acetanilidas/farmacologia , Acetanilidas/uso terapêutico , Animais , Animais Recém-Nascidos , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Proteínas de Ligação ao Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Caspase 3/metabolismo , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Venenos de Cnidários/farmacologia , Relação Dose-Resposta a Droga , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Fenômenos Eletrofisiológicos/fisiologia , Feminino , Expressão Gênica/efeitos dos fármacos , Ventrículos do Coração/citologia , Ventrículos do Coração/efeitos dos fármacos , Humanos , Camundongos , Camundongos Endogâmicos , Camundongos Transgênicos , Miócitos Cardíacos/efeitos dos fármacos , Canal de Sódio Disparado por Voltagem NAV1.5 , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Perfusão , Fosforilação/efeitos dos fármacos , Piperazinas/farmacologia , Piperazinas/uso terapêutico , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/fisiologia , RNA Interferente Pequeno/genética , Coelhos , Ranolazina , Ratos , Ratos Sprague-Dawley , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Canais de Sódio/genética , Trocador de Sódio e Cálcio/antagonistas & inibidores , Trocador de Sódio e Cálcio/metabolismo , Taquicardia Ventricular/induzido quimicamente , Taquicardia Ventricular/prevenção & controle , Tetrodotoxina/farmacologia , Veratridina/farmacologia
4.
Mol Pharmacol ; 76(3): 526-33, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19549762

RESUMO

Effective medical treatment of opiate addiction is limited by a high relapse rate in abstinent addicts. Opiate withdrawal causes cAMP superactivation, but the underlying molecular mechanisms are not clear. Recent evidence implicates an activator of G-protein signaling 3 (AGS3) in opiate addiction. We found previously that during a 10-min activation of opioid receptors, AGS3 binds G alpha(i)-GDP to promote free G betagamma stimulation of adenylyl cyclase (AC) 2 and 4, and/or inactivate G alpha(i) inhibitory function, thereby transiently enhancing cAMP-dependent protein kinase A (PKA) activity. In contrast, we report here that in nucleus accumbens/striatal neurons, morphine withdrawal induces cAMP superactivation, which requires up-regulation of AGS3. cAMP increases as a function of withdrawal time, by approximately 20% at 10 min and 75% at 5 h. However, cAMP superactivation does not require G betagamma. Instead, adenosine A2A receptor activation of G alpha(s/olf) seems to initiate cAMP superactivation and promote AGS3 up-regulation. Elevated AGS3 binds to G alpha(i) to prevent its inhibition on AC activation. Moreover, withdrawal-induced increases in cAMP/PKA activate phospholipase C and epsilon protein kinase C to further stimulate AC5 and AC7, causing cAMP superactivation. Our findings identify a critical role for AC 5 and 7 and A2A receptors for up-regulation of AGS3 in morphine withdrawal-induced cAMP superactivation.


Assuntos
Adenilil Ciclases/metabolismo , Proteínas de Transporte/biossíntese , Corpo Estriado/enzimologia , AMP Cíclico/agonistas , Isoenzimas/metabolismo , Morfina/administração & dosagem , Núcleo Accumbens/enzimologia , Síndrome de Abstinência a Substâncias/metabolismo , Animais , Células Cultivadas , Neurônios/enzimologia , Proteína Quinase C-épsilon/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor A2A de Adenosina/metabolismo , Regulação para Cima
5.
Mol Pharmacol ; 73(4): 1105-12, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18202306

RESUMO

We found previously that neural responses to ethanol and the dopamine D2 receptor (D2) agonist 2,10,11-trihydroxy-N-propylnorapomorphine hydrobromide (NPA) involve both epsilon protein kinase C (epsilonPKC) and cAMP-dependent protein kinase A (PKA). However, little is known about the mechanism underlying ethanol- and D2-mediated activation of epsilonPKC and the relationship to PKA activation. In the present study, we used a new epsilonPKC antibody, 14E6, that selectively recognized active epsilonPKC when not bound to its anchoring protein epsilonRACK (receptor for activated C-kinase), and PKC isozyme-selective inhibitors and activators to measure PKC translocation and catalytic activity. We show here that ethanol and NPA activated epsilonPKC and induced translocation of both epsilonPKC and its anchoring protein, epsilonRACK to a new cytosolic site. The selective epsilonPKC agonist, pseudo-epsilonRACK, activated epsilonPKC but did not cause translocation of the epsilonPKC/epsilonRACK complex to the cytosol. These data suggest a step-wise activation and translocation of epsilonPKC after NPA or ethanol treatment, where epsilonPKC first translocates and binds to its RACK and subsequently the epsilonPKC/epsilonRACK complex translocates to a new subcellular site. Direct activation of PKA by adenosine-3',5'-cyclic monophosphorothioate, Sp-isomer (Sp-cAMPS), prostaglandin E1, or the adenosine A2A receptor is sufficient to cause epsilonPKC translocation to the cytosolic compartment in a process that is dependent on PLC activation and requires PKA activity. These data demonstrate a novel cross-talk mechanism between epsilonPKC and PKA signaling systems. PKA and PKC signaling have been implicated in alcohol rewarding properties in the mesolimbic dopamine system. Cross-talk between PKA and PKC may underlie some of the behaviors associated with alcoholism.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Dopamina/farmacologia , Etanol/farmacologia , Proteína Quinase C-épsilon/metabolismo , Receptores de Superfície Celular/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Ativação Enzimática/efeitos dos fármacos , Modelos Biológicos , Transporte Proteico/efeitos dos fármacos , Ratos , Receptores de Quinase C Ativada , Fatores de Tempo , Fosfolipases Tipo C/metabolismo
6.
J Pharmacol Exp Ther ; 322(1): 23-9, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17468300

RESUMO

Tobacco and alcohol are the most commonly used drugs of abuse and show the most serious comorbidity. The mesolimbic dopamine system contributes significantly to nicotine and ethanol reinforcement, but the underlying cellular signaling mechanisms are poorly understood. Nicotinic acetylcholine (nACh) receptors are highly expressed on ventral tegmental area (VTA) dopamine neurons, with relatively low expression in nucleus accumbens (NAcb) neurons. Because dopamine receptors D(1) and D(2) are highly expressed on NAcb neurons, nicotine could influence NAcb neurons indirectly by activating VTA neurons to release dopamine in the NAcb. To investigate this possibility in vitro, we established primary cultures containing neurons from VTA or NAcb separately or in cocultures. Nicotine increased cAMP response element-mediated gene expression only in cocultures; this increase was blocked by nACh or dopamine D(1) or D(2) receptor antagonists. Furthermore, subthreshold concentrations of nicotine with ethanol increased gene expression in cocultures, and this increase was blocked by nACh, D(2) or adenosine A(2A) receptor antagonists, Gbetagamma or protein kinase A (PKA) inhibitors, and adenosine deaminase. These results suggest that nicotine activated VTA neurons, causing the release of dopamine, which in turn stimulated both D(1) and D(2) receptors on NAcb neurons. In addition, subthreshold concentrations of nicotine and ethanol in combination also activated NAcb neurons through synergy between D(2) and A(2A) receptors. These data provide a novel cellular mechanism, involving Gbetagamma subunits, A(2A) receptors, and PKA, whereby combined use of tobacco and alcohol could enhance the reinforcing effect in humans as well as facilitate long-term neuroadaptations, increasing the risk for developing coaddiction.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Etanol/farmacologia , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/fisiologia , Nicotina/farmacologia , Núcleo Accumbens/efeitos dos fármacos , Receptor A2A de Adenosina/fisiologia , Receptores de Dopamina D1/fisiologia , Receptores de Dopamina D2/fisiologia , Área Tegmentar Ventral/efeitos dos fármacos , Animais , Células Cultivadas , Técnicas de Cocultura , Ativação Enzimática , Expressão Gênica/efeitos dos fármacos , Núcleo Accumbens/enzimologia , Subunidades Proteicas , Ratos , Ratos Sprague-Dawley , Elementos de Resposta/fisiologia , Área Tegmentar Ventral/enzimologia
7.
Proc Natl Acad Sci U S A ; 103(20): 7877-82, 2006 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-16684876

RESUMO

Relapse is the most serious limitation of effective medical treatment of opiate addiction. Opiate-related behaviors appear to be modulated by cannabinoid CB1 receptors (CB1) through poorly understood cross-talk mechanisms. Opiate and CB1 receptors are coexpressed in the nucleus accumbens (NAc) and dorsal striatum. These regions also have the highest density of adenosine A2a receptors (A2a) in the brain. We have been investigating the postsynaptic signaling mechanisms of mu-opiate receptors (MORs) and CB1 receptors in primary NAc/striatal neurons. In this article, we present evidence that MOR and CB1 act synergistically on cAMP/PKA signaling in NAc/striatal neurons. In addition, we find that synergy requires adenosine and A2a. Importantly, an A2a antagonist administered either directly into the NAc or indirectly by i.p. injection eliminates heroin-induced reinstatement in rats trained to self-administer heroin, a model of human craving and relapse. These findings suggest that A2a antagonists might be effective therapeutic agents in the management of abstinent heroin addicts.


Assuntos
Comportamento Animal/fisiologia , Sinergismo Farmacológico , Dependência de Heroína , Receptor A2A de Adenosina , Receptor CB1 de Canabinoide/metabolismo , Receptores Opioides mu/metabolismo , Transdução de Sinais/fisiologia , Antagonistas do Receptor A2 de Adenosina , Analgésicos Opioides/metabolismo , Analgésicos Opioides/farmacologia , Animais , Ácidos Araquidônicos/metabolismo , Ácidos Araquidônicos/farmacologia , Comportamento Animal/efeitos dos fármacos , Corpo Estriado/citologia , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ala(2)-MePhe(4)-Gly(5)-Encefalina/metabolismo , Ala(2)-MePhe(4)-Gly(5)-Encefalina/farmacologia , Ativação Enzimática , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Núcleo Accumbens/citologia , Ratos , Ratos Sprague-Dawley , Receptor A2A de Adenosina/metabolismo , Autoadministração , Teobromina/análogos & derivados , Teobromina/metabolismo , Teobromina/farmacologia , Xantinas/metabolismo , Xantinas/farmacologia
8.
Proc Natl Acad Sci U S A ; 102(24): 8746-51, 2005 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-15937104

RESUMO

The nucleus accumbens (NAc) is central to heroin addiction. Activation of opiate receptors in the NAc dissociates G(i/o) into alpha and betagamma subunits. Galpha(i) inhibits cAMP production, but betagamma regulates several molecular pathways, including protein kinase A (PKA). We show in NAc/striatal neurons that opiates paradoxically activate PKA signaling by means of betagamma dimers. Activation requires Galpha(i3) and an activator of G protein signaling 3 (AGS3). AGS3 competes with betagamma for binding to Galpha(i3)-GDP and enhances the action of unbound betagamma. AGS3 and Galpha(i3) knockdown prevents opiate activation of PKA signaling. In rats self-administering heroin, AGS3 antisense in the NAc core, but not shell, eliminates reinstatement of heroin-seeking behavior, a model of human relapse. Thus, Galpha(i3)/betagamma/AGS3 appears to mediate mu opiate receptor activation of PKA signaling as well as heroin-seeking behavior.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Dependência de Heroína/metabolismo , Núcleo Accumbens/metabolismo , Receptores Opioides/metabolismo , Transdução de Sinais/fisiologia , Animais , Western Blotting , Encéfalo/patologia , Células Cultivadas , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Vetores Genéticos , Técnicas Histológicas , Imunoprecipitação , Masculino , Oligonucleotídeos , Ratos , Ratos Sprague-Dawley , Simplexvirus
9.
Proc Natl Acad Sci U S A ; 100(24): 14379-84, 2003 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-14605213

RESUMO

The mesolimbic dopamine system and cAMP-dependent/protein kinase A (PKA) pathways are strongly implicated in addictive behaviors. Here we determine the role of dopamine D2 receptors (D2) in PKA signaling responses to delta-opioid (DOR) and cannabinoid (CB1) receptors. We find in NG108-15/D2 cells and in cultured primary neurons that a brief exposure to saturating concentrations of DOR and CB1 agonists increases cAMP, promotes PKA C alpha translocation and increases cAMP-dependent gene expression. Activation of PKA signaling is mediated by Gi-beta gamma dimers. Importantly, subthreshold concentrations of DOR or CB1 agonists with D2 agonists, which are without effect when added separately, together activate cAMP/PKA signaling synergistically. There is also synergy between DOR or CB1 with ethanol, another addicting agent. In all instances, synergy requires adenosine activation of adenosine A2 receptors and is mediated by beta gamma dimers. Synergy by this molecular mechanism appears to confer hypersensitivity to opioids and cannabinoids while simultaneously increasing the sensitivity of D2 signaling when receptors are expressed on the same cells. This mechanism may account, in part, for drug-induced activation of medium spiny neurons in the nucleus accumbens.


Assuntos
Adenosina/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Transtornos Relacionados ao Uso de Substâncias/metabolismo , Animais , Ácidos Araquidônicos/farmacologia , Linhagem Celular , Células Cultivadas , AMP Cíclico/metabolismo , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Dimerização , Agonistas de Dopamina/farmacologia , Sinergismo Farmacológico , Leucina Encefalina-2-Alanina/farmacologia , Etanol/farmacologia , Subunidades beta da Proteína de Ligação ao GTP/química , Isoenzimas/metabolismo , Modelos Neurológicos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos , Receptor CB1 de Canabinoide/agonistas , Receptor CB1 de Canabinoide/metabolismo , Receptores A2 de Adenosina/metabolismo , Receptores Opioides delta/agonistas , Receptores Opioides delta/metabolismo
10.
Cell ; 109(6): 733-43, 2002 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-12086672

RESUMO

Dopamine release is activated by ethanol and addicting drugs, but molecular mechanisms linking dopaminergic signaling to neuronal responses and drinking behavior are poorly understood. We report that dopamine-D2 receptors induce PKA Calpha translocation and increase CRE-regulated gene expression. Ethanol also activates PKA signaling. Subthreshold concentrations of the D2 agonist NPA and ethanol, without effect alone, together cause synergistic PKA translocation and CRE-mediated gene transcription. D2 or adenosine A2 receptor blockade, pertussis toxin, Rp-cAMPS, or overexpression of dominant-negative peptides that sequester betagamma dimers prevent synergy. Importantly, overexpression of a betagamma inhibitor peptide in the nucleus accumbens strikingly reduces sustained alcohol consumption. We propose that synergy of D2 and A2 confers ethanol hypersensitivity and that betagamma dimers are required for voluntary drinking.


Assuntos
Apomorfina/análogos & derivados , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Etanol/farmacologia , Receptores de Dopamina D2/metabolismo , Receptores Purinérgicos P1/metabolismo , Adenoviridae/genética , Consumo de Bebidas Alcoólicas , Animais , Animais Recém-Nascidos , Apomorfina/farmacologia , Western Blotting , AMP Cíclico/metabolismo , Dimerização , Agonistas de Dopamina/farmacologia , Relação Dose-Resposta a Droga , Fase G1 , Regulação da Expressão Gênica , Genes Reporter , Hipocampo/citologia , Imuno-Histoquímica , Integrases/metabolismo , Isoenzimas/metabolismo , Luciferases/metabolismo , Microscopia Confocal , Modelos Biológicos , Peptídeos/química , Toxina Pertussis , Ligação Proteica , Proteína Quinase C/metabolismo , Proteína Quinase C-alfa , Estrutura Terciária de Proteína , Transporte Proteico , Ratos , Ratos Sprague-Dawley , Receptores de Dopamina D2/química , Receptores Purinérgicos P1/química , Transdução de Sinais , Frações Subcelulares , Fatores de Tempo , Transcrição Gênica , Transfecção , Proteínas Virais/metabolismo , Fatores de Virulência de Bordetella/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA