Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
2.
Mol Ther Oncol ; 32(1): 200787, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38596290

RESUMO

Glioblastoma, the most common primary brain tumor, has a 6.8% survival rate 5 years post diagnosis. Our team developed an oncolytic adenovirus with an OX-40L expression cassette named Delta-24-RGDOX. While studies have revealed the interaction between the gut microbiota and immunotherapy agents, there are no studies linking the gut microbiota with viroimmunotherapy efficacy. We hypothesize that gut bacterial signatures will be associated with oncolytic viral therapy efficacy. To test this hypothesis, we evaluated the changes in gut microbiota in two mouse cohorts: (1) GSC-005 glioblastoma-bearing mice treated orally with indoximod, an immunotherapeutic agent, or with Delta-24-RGDOX by intratumoral injection and (2) a mouse cohort harboring GL261-5 tumors used to mechanistically evaluate the importance of CD4+ T cells in relation to viroimmunotherapy efficacy. Microbiota assessment indicated significant differences in the structure of the gut bacterial communities in viroimmunotherapy-treated animals with higher survival compared with control or indoximod-treated animals. Moreover, viroimmunotherapy-treated mice with prolonged survival had a higher abundance of Bifidobacterium. The CD4+ T cell depletion was associated with gut dysbiosis, lower mouse survival, and lower antitumor efficacy of the therapy. These findings suggest that microbiota modulation along the gut-glioma axis contributes to the clinical efficacy and patient survival of viroimmunotherapy treated animals.

3.
Mol Ther ; 32(3): 722-733, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38311852

RESUMO

Oncolytic viruses are a promising treatment for patients with high-grade gliomas, but neutralizing antibodies can limit their efficacy in patients with prior virus exposure or upon repeated virus injections. Data from a previous clinical trial using the oncolytic adenovirus Delta-24-RGD showed that generation of anti-viral neutralizing antibodies may affect the long-term survival of glioma patients. Past studies have examined the effects of neutralizing antibodies during systemic virus injections, but largely overlooked their impact during local virus injections into the brain. We found that immunoglobulins colocalized with viral proteins upon local oncolytic virotherapy of brain tumors, warranting a strategy to prevent virus neutralization and maximize oncolysis. Thus, we generated a chimeric virus, Delta-24-RGD-H43m, by replacing the capsid protein HVRs from the serotype 5-based Delta-24-RGD with those from the rare serotype 43. Delta-24-RGD-H43m evaded neutralizing anti-Ad5 antibodies and conferred a higher rate of long-term survival than Delta-24-RGD in glioma-bearing mice. Importantly, Delta-24-RGD-H43m activity was significantly more resistant to neutralizing antibodies present in sera of glioma patients treated with Delta-24-RGD during a phase 1 clinical trial. These findings provide a framework for a novel treatment of glioma patients that have developed immunity against Delta-24-RGD.


Assuntos
Neoplasias Encefálicas , Glioma , Terapia Viral Oncolítica , Vírus Oncolíticos , Humanos , Animais , Camundongos , Adenoviridae/genética , Anticorpos Neutralizantes , Glioma/terapia , Glioma/patologia , Neoplasias Encefálicas/patologia , Vírus Oncolíticos/genética , Anticorpos Antivirais , Oligopeptídeos/uso terapêutico
4.
Antib Ther ; 7(1): 13-27, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38235377

RESUMO

The immune checkpoint leukocyte immunoglobulin-like receptor B4 (LILRB4) is found specifically on the cell surface of acute monocytic leukemia (monocytic AML), an aggressive and common subtype of AML. We have developed a humanized monoclonal IgG1 LILRB4-blocking antibody (h128-3), which improved immune regulation but reduced cell surface expression of LILRB4 in monocytic AML models by 40-60%. Interestingly, most of this effect was neutralized by mutation of the Fc region of the antibody (h128-3/N297A), which prevents interaction with Fc gamma receptors (FcγRs). This suggested that there is FcγR-dependent antigenic modulation underlying h128-3's effects, a mechanism known to alter the function of antibodies targeting B-cell malignancies. We disrupted the Fc-FcγR interaction pharmacologically and with stable CRISPR-Cas9-mediated genetic knockout of FcγRs in monocytic AML cell lines to investigate the role of FcγR-dependent antigenic modulation in the regulation of LILRB4 by h128-3. When FcγRI is inhibited or removed from the surface of monocytic AML cells, h128-3 cannot optimally perform its blocking function, resulting in activation of the LILRB4 inhibitory receptor and leading to a 15-25% decrease in T-cell-mediated cytotoxicity in vitro. In the absence of FcγRI, scaffolding by FcγRIIa allows h128-3 to maintain LILRB4-blocking function. Here we define a FcγR-dependent antigenic modulation mechanism underlying the function of an immunoreceptor blocking antibody for the first time in myeloid malignancy. This research will facilitate the development of safe, precision-targeted antibody therapeutics in myeloid malignancies with greater potency and efficacy.

5.
Cancer Res Commun ; 3(6): 1118-1131, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37379361

RESUMO

Cancer cell heterogeneity and immunosuppressive tumor microenvironment (TME) pose a challenge in treating solid tumors with adoptive cell therapies targeting limited tumor-associated antigens (TAA), such as chimeric antigen receptor T-cell therapy. We hypothesize that oncolytic adenovirus Delta-24-RGDOX activates the TME and promote antigen spread to potentiate the abscopal effect of adoptive TAA-targeting T cells in localized intratumoral treatment. Herein, we used C57BL/6 mouse models with disseminated tumors derived from B16 melanoma cell lines to assess therapeutic effects and antitumor immunity. gp100-specific pmel-1 or ovalbumin (OVA)-specific OT-I T cells were injected into the first subcutaneous tumor, followed by three injections of Delta-24-RGDOX. We found TAA-targeting T cells injected into one subcutaneous tumor showed tumor tropism. Delta-24-RGDOX sustained the systemic tumor regression mediated by the T cells, leading to improved survival rate. Further analysis revealed that, in mice with disseminated B16-OVA tumors, Delta-24-RGDOX increased CD8+ leukocyte density within treated and untreated tumors. Importantly, Delta-24-RGDOX significantly reduced the immunosuppression of endogenous OVA-specific CTLs while increasing that of CD8+ leukocytes and, to a lesser extent, adoptive pmel-1 T cells. Consequently, Delta-24-RGDOX drastically increased the density of the OVA-specific CTLs in both tumors, and the combination synergistically enhanced the effect. Consistently, the splenocytes from the combination group showed a significantly stronger response against other TAAs (OVA and TRP2) than gp100, resulted in higher activity against tumor cells. Therefore, our data demonstrate that, as an adjuvant therapy followed TAA-targeting T cells in localized treatment, Delta-24-RGDOX activates TME and promotes antigen spread, leading to efficacious systemic antitumor immunity to overcome tumor relapse. Significance: Adjuvant therapy with oncolytic viruses promotes antigen spread to potentiate localized intratumoral adoptive T-cell therapy with limited TAA targets, leading to sustainable systemic antitumor immunity to overcome tumor relapse.


Assuntos
Infecções por Adenoviridae , Adenoviridae , Camundongos , Animais , Adenoviridae/genética , Linhagem Celular Tumoral , Camundongos Endogâmicos C57BL , Recidiva Local de Neoplasia , Linfócitos T Citotóxicos , Antígenos de Neoplasias , Microambiente Tumoral
6.
Sci Transl Med ; 14(661): eabq0095, 2022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-36070367

RESUMO

Triggering receptor expressed on myeloid cells 2 (TREM2) plays crucial roles in Alzheimer's disease (AD) by regulating microglia migration toward, and phagocytosis of oligomeric amyloid-ß (oAß) and amyloid plaques. Studies in rodent models of AD have shown that mice with increased TREM2 expression have reduced amyloid pathology. Here, we identified a TREM2 agonist monoclonal Ab (Ab18) by panning a phage-displayed single-chain variable fragment Ab library. By engineering the bivalent immunoglobulin G1 (IgG1) to tetra-variable domain immunoglobulin (TVD-Ig), we further increased the TREM2 activation by 100-fold. Stronger TREM2 activation led to enhanced microglia phagocytosis of the oAß-lipid complex, migration toward oAß, and improved microglia survival in vitro. Mechanistic studies showed increased TREM2 clustering on microglia by the tetravalent Ab18 TVD-Ig without altering microglial TREM2 amount. An engineered bispecific Ab targeting TREM2 and transferrin receptor (TfR; Ab18 TVD-Ig/αTfR) improved Ab brain entry by more than 10-fold with a broad brain parenchyma distribution. Weekly treatment of 5XFAD mice (a model of AD) with Ab18 TVD-Ig/αTfR showed a considerable reduction of amyloid burden with increased microglia migration to and phagocytosis of amyloid plaques, improved synaptic and neuronal marker intensity, improved cognitive functions, reduced endogenous tau hyperphosphorylation, and decreased phosphorylated neurofilament H immunostaining. This study demonstrated the feasibility of engineering multivalent TREM2 agonistic Ab coupled with TfR-mediated brain delivery to enhance microglia functions and reduce amyloid pathology in vitro and in vivo. This Ab engineering approach enables the development of effective TREM2-targeting therapies for AD.


Assuntos
Doença de Alzheimer , Amiloidose , Doença de Alzheimer/patologia , Amiloide , Peptídeos beta-Amiloides/metabolismo , Animais , Anticorpos , Modelos Animais de Doenças , Glicoproteínas de Membrana , Camundongos , Placa Amiloide/patologia , Receptores Imunológicos
7.
Commun Biol ; 5(1): 960, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36104515

RESUMO

Natural killer (NK) cells mediate antibody dependent cytotoxic killing of cancer cells via cross-linking FcγR on NK cells with IgG-Fc. Studies have shown that the single-hinge cleaved IgGs (scIgGs) have dysfunctional Fc and failed engagement with FcγRs on immune cells. However, little is known about how scIgGs impact on antitumor immunity in the tumor microenvironment. In this study, we revealed a significant association of tumor scIgGs with tumor progression and poor outcomes of breast cancer patients (n = 547). Using multiple mouse tumor models, we demonstrated that tumor scIgGs reduced NK cell cytotoxic activities and resulted in aggressive tumor progression. We further showed that an anti-hinge specific monoclonal antibody (AHA) rescued the dysfunctional Fc in scIgGs by providing a functional Fc and restored NK cell cytotoxic activity. These findings point to a novel immunotherapeutic strategy to enhance Fc engagement with FcγRs for activation of anticancer immunity.


Assuntos
Antineoplásicos , Neoplasias , Animais , Imunoglobulina G , Células Matadoras Naturais , Camundongos , Processos Neoplásicos , Microambiente Tumoral
8.
J Immunother Cancer ; 10(7)2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35902132

RESUMO

BACKGROUND: Oncolytic viruses are considered part of immunotherapy and have shown promise in preclinical experiments and clinical trials. Results from these studies have suggested that tumor microenvironment remodeling is required to achieve an effective response in solid tumors. Here, we assess the extent to which targeting specific mechanisms underlying the immunosuppressive tumor microenvironment optimizes viroimmunotherapy. METHODS: We used RNA-seq analyses to analyze the transcriptome, and validated the results using Q-PCR, flow cytometry, and immunofluorescence. Viral activity was analyzed by replication assays and viral titration. Kyn and Trp metabolite levels were quantified using liquid chromatography-mass spectrometry. Aryl hydrocarbon receptor (AhR) activation was analyzed by examination of promoter activity. Therapeutic efficacy was assessed by tumor histopathology and survival in syngeneic murine models of gliomas, including Indoleamine 2,3-dioxygenase (IDO)-/- mice. Flow cytometry was used for immunophenotyping and quantification of cell populations. Immune activation was examined in co-cultures of immune and cancer cells. T-cell depletion was used to identify the role played by specific cell populations. Rechallenge experiments were performed to identify the development of anti-tumor memory. RESULTS: Bulk RNA-seq analyses showed the activation of the immunosuppressive IDO-kynurenine-AhR circuitry in response to Delta-24-RGDOX infection of tumors. To overcome the effect of this pivotal pathway, we combined Delta-24-RGDOX with clinically relevant IDO inhibitors. The combination therapy increased the frequency of CD8+ T cells and decreased the rate of myeloid-derived suppressor cell and immunosupressive Treg tumor populations in animal models of solid tumors. Functional studies demonstrated that IDO-blockade-dependent activation of immune cells against tumor antigens could be reversed by the oncometabolite kynurenine. The concurrent targeting of the effectors and suppressors of the tumor immune landscape significantly prolonged the survival in animal models of orthotopic gliomas. CONCLUSIONS: Our data identified for the first time the in vivo role of IDO-dependent immunosuppressive pathways in the resistance of solid tumors to oncolytic adenoviruses. Specifically, the IDO-Kyn-AhR activity was responsible for the resurface of local immunosuppression and resistance to therapy, which was ablated through IDO inhibition. Our data indicate that combined molecular and immune therapy may improve outcomes in human gliomas and other cancers treated with virotherapy.


Assuntos
Glioma , Vírus Oncolíticos , Animais , Linfócitos T CD8-Positivos/metabolismo , Glioma/terapia , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase , Cinurenina/metabolismo , Camundongos , Vírus Oncolíticos/genética , Vírus Oncolíticos/metabolismo , Sinapses/metabolismo , Microambiente Tumoral
9.
MAbs ; 14(1): 2057269, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35388745

RESUMO

Glioblastoma (GBM) is a common and aggressive brain cancer that accounts for 60% of adult brain tumors. Anti-angiogenesis therapy is an attractive option due to the high vasculature density of GBM. However, the best-known anti-angiogenic therapeutics, bevacizumab, and aflibercept, have failed to show significant benefits in GBM patients. One of the reasons is the limited brain penetration of antibody-based therapies due to existence of the blood-brain barrier (BBB), which is further strengthened by the blood vessel normalization effects induced by anti-angiogenic therapies. To investigate if increased drug concentration in the brain by transferrin receptor (TfR)-mediated delivery across the BBB can enhance efficacy of anti-angiogenic antibody therapies, we first identified an antibody that binds to the apical domain of the mouse TfR and does not compete with the natural ligand transferrin (Tf) binding to TfR. Then, we engineered two bispecific antibodies fusing a vascular endothelial growth factor (VEGF)-Trap with the TfR-targeting antibody. Characterization of the two bispecific formats using multiple in vitro assays, which include endocytosis, cell surface and whole-cell TfR levels, human umbilical vein endothelial cell growth inhibition, and binding affinity, demonstrated that the VEGF-Trap fused with a monovalent αTfR (VEGF-Trap/moAb4) has desirable endocytosis without the induction of TfR degradation. Peripherally administered VEGF-Trap/moAb4 improved the brain concentration of VEGF-Trap by more than 10-fold in mice. The distribution of VEGF-Trap/moAb4 was validated to be in the brain parenchyma, indicating the molecule was not trapped inside the vasculature. Moreover, improved VEGF-Trap brain distribution significantly inhibited the angiogenesis of U-87 MG GBM tumors in a mouse model.


Assuntos
Anticorpos Biespecíficos , Glioblastoma , Inibidores da Angiogênese/farmacologia , Animais , Anticorpos Biespecíficos/metabolismo , Glioblastoma/metabolismo , Humanos , Camundongos , Receptores da Transferrina , Receptores de Fatores de Crescimento do Endotélio Vascular , Proteínas Recombinantes de Fusão , Transferrina/metabolismo , Fator A de Crescimento do Endotélio Vascular
10.
Nat Commun ; 12(1): 2031, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33795676

RESUMO

Patient-derived xenografts are crucial for drug development but their use is challenged by issues such as murine viral infection. We evaluate the scope of viral infection and its impact on patient-derived xenografts by taking an unbiased data-driven approach to analyze unmapped RNA-Seq reads from 184 experiments. We find and experimentally validate the extensive presence of murine viral sequence reads covering entire viral genomes in patient-derived xenografts. The existence of viral sequences inside tumor cells is further confirmed by single cell sequencing data. Extensive chimeric reads containing both viral and human sequences are also observed. Furthermore, we find significantly changed expression levels of many cancer-, immune-, and drug metabolism-related genes in samples with high virus load. Our analyses indicate a need to carefully evaluate the impact of viral infection on patient-derived xenografts for drug development. They also point to a need for attention to quality control of patient-derived xenograft experiments.


Assuntos
Genoma Viral/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Neoplasias/genética , Análise de Sequência de DNA/métodos , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Animais , Linhagem Celular Tumoral , Produtos do Gene env/classificação , Produtos do Gene env/genética , Produtos do Gene gag/classificação , Produtos do Gene gag/genética , Xenoenxertos/metabolismo , Xenoenxertos/virologia , Humanos , Camundongos , Neoplasias/classificação , Neoplasias/virologia , Filogenia , Viroses/genética , Viroses/virologia
11.
Neurooncol Adv ; 1(1): vdz009, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31608328

RESUMO

BACKGROUND: Viroimmunotherapy is evolving as a strong alternative for the standard treatment of malignant gliomas. Promising results from a recent clinical trial testing the anticancer effect of Delta-24-RGD in patients with glioblastoma suggested the induction of antitumoral immunity after viral administration. To further enhance the anti-glioma immune effect, we have armed Delta-24-RGD with the costimulatory ligand GITRL (Delta-24-GREAT [Glucocorticoid Receptor Enhanced Activity of T cells]). METHODS: We tested the infectivity and replication of Delta-24-GREAT, and the expression of ectopic GITRL in human and murine glioma cell lines. In vivo experiments involved the intracranial implantation of glioma cells into an immunocompetent model to study the anticancer effect, and rechallenging experiments to study long-term protection. Phenotypic and functional characterization of lymphocyte populations were performed by FACS and ELISA for Th1 cytokines expression, respectively. RESULTS: Our results showed that Delta-24-GREAT infects and induces the expression of GITRL. Delta-24-GREAT prolonged the survival of glioma-bearing immunocompetent mice and resulted in both anti-viral and anti-glioma immune responses, including increased frequency of central memory CD8+ T cells. Rechallenging the surviving mice with a second implantation of glioma cells did not lead to tumor growth; however, the surviving mice developed lethal tumors when B16/F10 melanoma cells were implanted intracranially, strongly indicating that the immune response was specific for glioma antigens. CONCLUSIONS: GITRL-armed Delta-24-RGD treatment results in an antigen-restricted antitumor memory, an enhanced anti-glioma effect, and the generation of central immune memory. Our results strongly indicate that this strategy represents a vertical advance in virotherapy designed to treat patients with malignant brain tumors.

12.
ACS Appl Mater Interfaces ; 11(43): 40850-40859, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31577407

RESUMO

In this work, a thin-film transistor gas sensor based on the p-N heterojunction is fabricated by stacking chemical vapor deposition-grown tungsten disulfide (WS2) with a sputtered indium-gallium-zinc-oxide (IGZO) film. To the best of our knowledge, the present device has the best NO2 gas sensor response compared to all the gas sensors based on transition-metal dichalcogenide materials. The gas-sensing response is investigated under different NO2 concentrations, adopting heterojunction device mode and transistor mode. High sensing response is obtained of p-N diode in the range of 1-300 ppm with values of 230% for 5 ppm and 18 170% for 300 ppm. On the transistor mode, the gas-sensing response can be modulated by the gate bias, and the transistor shows an ultrahigh response after exposure to NO2, with sensitivity values of 6820% for 5 ppm and 499 400% for 300 ppm. Interestingly, the transistor has a typical ambipolar behavior under dry air, while the transistor becomes p-type as the amount of NO2 increases. The assembly of these results demonstrates that the WS2/IGZO device is a promising platform for the NO2-gas detection, and its gas-modulated transistor properties show a potential application in tunable engineering for two-dimensional material heterojunction-based transistor device.

13.
Clin Cancer Res ; 25(22): 6801-6814, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31455679

RESUMO

PURPOSE: Intratumoral injection of oncolytic adenovirus Delta-24-RGDOX induces efficacious antiglioma immunity in syngeneic glioma mouse models. We hypothesized that localized treatment with the virus is effective against disseminated melanomas. EXPERIMENTAL DESIGN: We tested the therapeutic effect of injecting Delta-24-RGDOX into primary subcutaneous (s.c.) B16-Red-FLuc tumors in s.c./s.c. and s.c./intracranial (i.c.) melanoma models in C57BL/6 mice. Tumor growth and in vivo luciferase-expressing ovalbumin-specific (OT-I/Luc) T cells were monitored with bioluminescence imaging. Cells were profiled for surface markers with flow cytometry. RESULTS: In both s.c./s.c. and s.c./i.c. models, 3 injections of Delta-24-RGDOX significantly inhibited the growth of both the virus-injected s.c. tumor and untreated distant s.c. and i.c. tumors, thereby prolonging survival. The surviving mice were protected from rechallenging with the same tumor cells. The virus treatment increased the presence of T cells and the frequency of effector T cells in the virus-injected tumor and mediated the same changes in T cells from peripheral blood, spleen, and brain hemispheres with untreated tumor. Moreover, Delta-24-RGDOX decreased the numbers of exhausted T cells and regulatory T cells in the virus-injected and untreated tumors. Consequently, the virus promoted the in situ expansion of tumor-specific T cells and their migration to tumors expressing the target antigen. CONCLUSIONS: Localized intratumoral injection of Delta-24-RGDOX induces an in situ antovaccination of the treated melanoma, the effect of which changes the immune landscape of the treated mice, resulting in systemic immunity against disseminated s.c. and i.c. tumors.


Assuntos
Neoplasias Encefálicas/imunologia , Melanoma/imunologia , Terapia Viral Oncolítica , Vírus Oncolíticos/genética , Neoplasias Cutâneas/imunologia , Animais , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/terapia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Humanos , Imunomodulação , Imunofenotipagem , Melanoma/diagnóstico por imagem , Melanoma/patologia , Melanoma/terapia , Melanoma Experimental , Camundongos , Neoplasias Cutâneas/diagnóstico por imagem , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/terapia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
14.
PLoS Pathog ; 15(7): e1007914, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31356650

RESUMO

Human cytomegalovirus (HCMV) is a ubiquitous pathogen that can cause disability in newborns and serious clinical diseases in immunocompromised patients. HCMV has a large genome with enormous coding potential; its viral particles are equipped with complicated glycoprotein complexes and can infect a wide range of human cells. Although multiple host cellular receptors interacting with viral glycoproteins have been reported, the mechanism of HCMV infection remains a mystery. Here we report identification of adipocyte plasma membrane-associated protein (APMAP) as a novel modulator active in the early stage of HCMV infection. APMAP is necessary for HCMV infection in both epithelial cells and fibroblasts; knockdown of APMAP expression significantly reduced HCMV infection of these cells. Interestingly, ectopic expression of human APMAP in cells refractory to HCMV infection, such as canine MDCK and murine NIH/3T3 cells, promoted HCMV infection. Furthermore, reduction in viral immediate early (IE) gene transcription at 6 h post infection and delayed nucleus translocation of tegument delivered pp65 at 4 h post infection were detected in APMAP-deficient cells but not in the wildtype cells. These results suggest that APMAP plays a role in the early stage of HCMV infection. Results from biochemical studies of APMAP and HCMV proteins suggest that APMAP could participate in HCMV infection through interaction with gH/gL containing glycoprotein complexes at low pH and mediate nucleus translocation of tegument pp65. Taken together, our results suggest that APMAP functions as a modulator promoting HCMV infection in multiple cell types and is an important player in the complex HCMV infection mechanism.


Assuntos
Infecções por Citomegalovirus/metabolismo , Infecções por Citomegalovirus/virologia , Citomegalovirus/patogenicidade , Glicoproteínas de Membrana/metabolismo , Adipócitos/metabolismo , Adipócitos/virologia , Animais , Membrana Celular/metabolismo , Membrana Celular/virologia , Citomegalovirus/genética , Citomegalovirus/metabolismo , Infecções por Citomegalovirus/etiologia , Cães , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Fibroblastos/metabolismo , Fibroblastos/virologia , Técnicas de Inativação de Genes , Interações entre Hospedeiro e Microrganismos , Humanos , Células Madin Darby de Rim Canino , Glicoproteínas de Membrana/antagonistas & inibidores , Glicoproteínas de Membrana/genética , Camundongos , Células NIH 3T3 , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Estruturais Virais/metabolismo , Virulência , Internalização do Vírus
15.
Oncogene ; 38(12): 2123-2134, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30455428

RESUMO

EGFL6, a member of the EGF-like superfamily, plays an important role during embryonic development and has been implicated in promotion of tumor angiogenesis without affecting wound healing. There is very little known about the function of EGFL6 in cancer cells. Here, we investigated whether EGFL6 plays a direct role in cancer cells in addition to the promotion of tumor angiogenesis. Our study showed that EGFL6 promoted epithelial-mesenchymal transition (EMT) and stemness of breast cancer cells and increased cell migration and invasion in cell culture studies. We also found that EGFL6 reduced apoptotic signaling in cancer cells and promoted tumor growth in vivo. Importantly, expression of EGFL6 in cancer cells and tumor endothelial cells not only increased tumor angiogenesis but also promoted migration of cancer cells. Such dual engagement of cancer and stromal cells suggests crosstalk mediated by EGFL6 in the tumor microenvironment. Blockade of EGFL6 using our novel anti-EGFL6 monoclonal antibody significantly reduced cancer cell migration, tumor angiogenesis, and tumor growth in mouse xenograft tumor models. Silencing EGFL6 mRNA by shRNA transfection of cancer cells also significantly reduced cancer cell migration, tumor angiogenesis, and tumor growth in mouse xenograft tumor models. Taken together, the results of this study indicate that targeting EGFL6 is a unique strategy for inhibiting both cancer cell metastasis and tumor angiogenesis.


Assuntos
Neoplasias da Mama/irrigação sanguínea , Neoplasias da Mama/patologia , Glicoproteínas de Membrana/metabolismo , Neovascularização Patológica/metabolismo , Animais , Apoptose , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/metabolismo , Proteínas de Ligação ao Cálcio , Moléculas de Adesão Celular , Movimento Celular , Transformação Celular Neoplásica , Transição Epitelial-Mesenquimal , Feminino , Humanos , Células MCF-7 , Camundongos , Metástase Neoplásica , Células-Tronco Neoplásicas/patologia , Prognóstico
16.
Oncoimmunology ; 7(9): e1480300, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30228951

RESUMO

The host immune system adopts multiple mechanisms involving antibodies to confront cancer cells. Accordingly, anti-tumor mAbs have become mainstays in cancer treatment. However, neither host immunity nor mAb therapies appear capable of controlling tumor growth in all cases. Structural instability of IgG was overlooked as a factor contributing to immunosuppression in the tumor microenvironment. Recently, physiological proteinases were identified that disable IgG immune effector functions. Evidence shows that these proteinases cause localized IgG impairment by selective cleavage of a single IgG peptide bond in the hinge-region. The recognition of IgG cleavage in the tumor microenvironment provides alternatives for tumor immunotherapy.

17.
Breast Cancer Res ; 20(1): 43, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29859099

RESUMO

BACKGROUND: Proteolytic impairment of the Fc effector functions of therapeutic monoclonal antibodies (mAbs) can compromise their antitumor efficacy in the tumor microenvironment and may represent an unappreciated mechanism of host immune evasion. Pertuzumab is a human epidermal growth factor receptor 2 (HER2)-targeting antibody and has been widely used in the clinic in combination with trastuzumab for treatment of HER2-overexpressing breast cancer. Pertuzumab susceptibility to proteolytic hinge cleavage and its impact on the drug's efficacy has not been previously studied. METHODS: Pertuzumab was incubated with high and low HER2-expressing cancer cells and proteolytic cleavage in the lower hinge region was detected by western blotting. The single hinge cleaved pertuzumab (scIgG-P) was purified and evaluated for its ability to mediate antibody-dependent cellular cytotoxicity (ADCC) in vitro and anti-tumor efficacy in vivo. To assess the cleavage of trastuzumab (IgG-T) and pertuzumab (IgG-P) when simultaneously bound to the same cancer cell surface, F(ab')2 fragments of IgG-T or IgG-P were combined with the intact IgG-P and IgG-T, respectively, to detect scIgG generation by western blotting. RESULTS: Pertuzumab hinge cleavage occurred when the mAb was incubated with high HER2-expressing cancer cells. The hinge cleavage of pertuzumab caused a substantial loss of ADCC in vitro and reduced antitumor efficacy in vivo. The reduced ADCC function of scIgG-P was restored by an anti-hinge mAb specific for a cleavage site neoepitope. In addition, we constructed a protease-resistant version of the anti-hinge mAb that restored ADCC and the cell-killing functions of pertuzumab when cancer cells exressed a potent IgG hinge-cleaving protease. We also observed increased hinge cleavage of pertuzumab when combined with trastuzumab. CONCLUSION: The reduced Fc effector function of single hinge-cleaved pertuzumab can be restored by an anti-hinge mAb. The restoration effect indicated that immune function could be readily augmented when the damaged primary antibodies were bound to cancer cell surfaces. The anti-hinge mAb also restored Fc effector function to the mixture of proteolytically disabled trastuzumab and pertuzumab, suggesting a general therapeutic strategy to restore the immune effector function to protease-inactivated anticancer antibodies in the tumor microenvironment. The findings point to a novel tactic for developing breast cancer immunotherapy.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Evasão Tumoral/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Animais , Anticorpos Monoclonais/efeitos adversos , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais Humanizados/administração & dosagem , Neoplasias da Mama/genética , Neoplasias da Mama/imunologia , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Fragmentos Fc das Imunoglobulinas/efeitos adversos , Fragmentos Fc das Imunoglobulinas/imunologia , Imunoglobulina G/imunologia , Camundongos , Proteólise/efeitos dos fármacos , Receptor ErbB-2/imunologia , Evasão Tumoral/imunologia , Microambiente Tumoral/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Can J Gastroenterol Hepatol ; 2018: 3767482, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29808160

RESUMO

The important factors of poor survival of gastric cancer (GC) are relapse and metastasis. For further elucidation of the mechanism, a culture system mimicking the microenvironment of the tumor in humans was needed. We established a model of microencapsulated SGC7901 human GC cells and evaluated the effects of coculturing spheres with tumor-associated macrophages (TAMs). SGC7901 cells were encapsulated in alginate-polylysine-sodium alginate (APA) microcapsules using an electrostatic droplet generator. MTT assays showed that the numbers of microencapsulated cells were the highest after culturing for 14 days. Metabolic curves showed consumption of glucose and production of lactic acid by day 20. Immunocytochemistry confirmed that Proliferating Cell Nuclear Antigen (PCNA) and Vascular Endothelial Growth Factor (VEGF) were expressed in microencapsulated SGC7901 cells on days 7 and 14. The expression of PCNA was observed outside spheroids; however, VEGF was found in the entire spheroids. PCNA and VEGF were increased after being cocultured with TAMs. Matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) expressions were detected in the supernatant of microencapsulated cells cocultured with TAMs but not in microencapsulated cells. Our study confirms the successful establishment of the microencapsulated GC cells. TAMs can promote PCNA, VEGF, MMP-2, and MMP-9 expressions of the GC cells.


Assuntos
Carcinoma/patologia , Técnicas de Cocultura , Macrófagos , Neoplasias Gástricas/patologia , Microambiente Tumoral , Carcinoma/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Glucose/metabolismo , Humanos , Ácido Láctico/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Modelos Biológicos , Antígeno Nuclear de Célula em Proliferação/metabolismo , Esferoides Celulares/metabolismo , Neoplasias Gástricas/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
19.
Artigo em Inglês | MEDLINE | ID: mdl-29038280

RESUMO

The host immune response to human cytomegalovirus (HCMV) is effective against HCMV reactivation from latency, though not sufficient to clear the virus. T cells are primarily responsible for the control of viral reactivation. When the host immune system is compromised, as in transplant recipients with immunosuppression, HCMV reactivation and progressive infection can cause serious morbidity and mortality. Adoptive T cell therapy is effective for the control of HCMV infection in transplant recipients. However, it is a highly personalized therapeutic regimen and is difficult to implement in routine clinical practice. In this study, we explored a bispecific-antibody strategy to direct non-HCMV-specific T cells to recognize and exert effector functions against HCMV-infected cells. Using a knobs-into-holes strategy, we constructed a bispecific antibody in which one arm is specific for CD3 and can trigger T cell activation, while the other arm, specific for HCMV glycoprotein B (gB), recognizes and marks HCMV-infected cells based on the expression of viral gB on their surfaces. We showed that this bispecific antibody was able to redirect T cells with specificity for HCMV-infected cells in vitro In the presence of HCMV infection, the engineered antibody was able to activate T cells with no HCMV specificity for cytokine production, proliferation, and the expression of phenotype markers unique to T cell activation. These results suggested the potential of engineered bispecific antibodies, such as the construct described here, as prophylactic or therapeutic agents against HCMV reactivation and infection.


Assuntos
Anticorpos Biespecíficos/farmacologia , Complexo CD3/imunologia , Infecções por Citomegalovirus/tratamento farmacológico , Infecções por Citomegalovirus/imunologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Proteínas do Envelope Viral/imunologia , Transferência Adotiva , Anticorpos Monoclonais Humanizados , Anticorpos Antivirais , Especificidade de Anticorpos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral
20.
Oncotarget ; 8(4): 6526-6539, 2017 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-28036286

RESUMO

Here we report that the lncRNA LINC00052 expression correlates positively with HER3/ErbB3 levels in breast cancer cells. Gene silencing of LINC00052 diminished both LINC00052 and HER3 expression and reduced cancer cell growth in vitro and in vivo. LINC00052 overexpression promoted cancer cell growth in vitro and in vivo and increased HER3-mediated downstream signaling. Importantly, neutralization of HER3 signaling with HER3 targeting monoclonal antibodies blocked LINC00052 mediated cancer cell proliferation in vitro and tumor growth in vivo, suggesting LINC00052 promoting cancer growth through HER3 signaling. Taken together, our results indicate that high LINC00052 levels predict activation of HER3-mediated signaling, and LINC00052 expression level may serve as a potential biomarker for HER3 targeted antibody cancer therapies.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/metabolismo , Proliferação de Células , RNA Longo não Codificante/metabolismo , Receptor ErbB-3/metabolismo , Animais , Anticorpos Monoclonais/farmacologia , Antineoplásicos Imunológicos/farmacologia , Biomarcadores Tumorais/antagonistas & inibidores , Biomarcadores Tumorais/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Células HEK293 , Humanos , Células MCF-7 , Camundongos Nus , Fosforilação , RNA Longo não Codificante/genética , Receptor ErbB-3/antagonistas & inibidores , Receptor ErbB-3/genética , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Transfecção , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA