Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
J Ethnopharmacol ; 317: 116776, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37343653

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Jieduquyuziyin prescription (JP) is a traditional Chinese medicine utilized to treat systemic lupus erythematosus (SLE). Its efficacy has been confirmed through clinical trials and empirical evidence, leading to its authorized use in Chinese hospitals. The development of JP exemplifies the integration of traditional wisdom and scientific approaches, demonstrating the interdisciplinary essence of ethnopharmacology. These results emphasize the potential value of traditional medicine in addressing autoimmune disorders. AIM OF THE STUDY: This study aims to address the effect of JP in MRL/lpr mice and elucidate the pharmacological mechanism by which JP targets CD11a and CD70 DNA methylation via the miR-29b-sp1/DNMT1 pathway. MATERIALS AND METHODS: MRL/lpr mice were divided into three groups: the model group (received distilled water), the positive group (administered AAV/miR-29b-3p inhibitor), and the JP group (treated with JP decoction). C57BL/6 mice were constituted as a control group. Through ELISA assay, serum and urine samples were assessed for anti-dsDNA, TNF-α, TGF-ß, IL-2, and UP. HE and Masson staining were conducted to reveal renal pathology. Genome DNA was extracted from CD4+ T cells of mice spleens to evaluate methylation level. The methylation of CD11a, CD70, and CD40L promoter regions was analyzed by targeted bisulfate sequencing. Their expression at the mRNA and protein levels was examined using quantitative real-time PCR, western blot analysis, immunohistochemistry, and immunofluorescence staining of kidney tissues. Furthermore, the molecular mechanisms underlying the regulation of the miR-29b-sp1/DNMT1 pathway by JP were explored with Jurkat cells transfected with miR-inhibitors or miR-mimics. RESULTS: Mice treated with JP exhibited a significant decrease in anti-dsDNA, TNF-α, TGF-ß, and UP, accompanied by a significant increase in IL-2. HE staining revealed JP effectively mitigated renal inflammatory response, while Masson staining indicated a reduction in collagen fiber content. In addition, JP exhibited a significant impact on the global hypomethylation of SLE, as evidenced by the induction of high methylation levels of CD11a and CD70 promoter regions, mediated through the miR-29b-sp1/DNMT1 pathway. CONCLUSION: Our findings demonstrate JP exerts a protective effect against spontaneous SLE development, attenuates renal pathological changes, and functions as a miRNA inhibitor to enhance CD11a and CD70 DNA methylation through the modulation of the miR-29b-sp1/DNMT1 pathway.


Assuntos
Lúpus Eritematoso Sistêmico , MicroRNAs , Animais , Camundongos , Metilação de DNA , Linfócitos T CD4-Positivos , Camundongos Endogâmicos MRL lpr , Interleucina-2/genética , Interleucina-2/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Lúpus Eritematoso Sistêmico/genética , Fator de Crescimento Transformador beta/metabolismo
2.
Eur J Pharmacol ; 953: 175823, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37263402

RESUMO

Lupus nephritis (LN) is a serious complication of systemic lupus erythematosus (SLE) and a leading cause of mortality. Luteolin (LUT), a compound found in many vegetables, fruits, and Chinese herbal medicine, has been shown to possess anti-inflammatory, antioxidant, and immunosuppressive properties. However, the mechanisms underlying LUT's potential therapeutic effects on LN remain unclear. In this study, we investigated LUT's antagonistic effects on inflammation and oxidative stress using MRL/lpr mice and H2O2-treated macrophages (Raw264.7). Our results indicate that LUT can ameliorate pathological abnormalities and improve renal function in MRL/lpr mice by reducing renal oxidative stress and urinary protein levels. Furthermore, we found that the Hypoxia-inducible factor 1α (HIF-1α) pathway is involved in the process of LUT improving renal injury in lupus mice. Analysis of GEO data confirmed that HIF-1α expression is significantly elevated in the kidneys of LN patients, and our experiments conducted in vitro and in vivo indicate that infiltrating macrophages contribute to the elevated levels of HIF-1α expression in the kidney. By inhibiting HIF-1α expression and oxidative stress in macrophages, LUT can mitigate renal damage caused by infiltrating macrophages. In conclusion, our findings suggest that LUT may serve as a potential therapeutic option for the prevention and treatment of LN by suppressing HIF-1α expression in macrophages.


Assuntos
Nefrite Lúpica , Animais , Camundongos , Nefrite Lúpica/tratamento farmacológico , Nefrite Lúpica/metabolismo , Luteolina/farmacologia , Luteolina/uso terapêutico , Peróxido de Hidrogênio/metabolismo , Camundongos Endogâmicos MRL lpr , Rim/patologia , Estresse Oxidativo , Macrófagos/metabolismo
3.
Cell Death Dis ; 14(3): 174, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36859530

RESUMO

Lupus nephritis (LN) is a type of immune-complex nephritis caused by systemic lupus erythematosus and is a major contributor to mortality and morbidity. Honokiol (HNK) has been found to have a therapeutic effect on LN, but its action mechanism remains unclear. In this study, we first demonstrated that HNK attenuates kidney injury in MRL/lpr mice. Results from RNA sequencing combined with ingenuity pathway analysis suggested that HNK plays an anti-LN role through inhibition of the NLRP3 inflammasome and IL33. GEO chip data, single-cell data, and clinical samples from LN patients demonstrated that the pyroptosis and IL-33/ST2 pathways are abnormally activated during the stage of LN. In vivo, similar to the results of the AAV-mediated NLRP3 shRNA MRL/lpr model, HNK downregulated serum and renal IL-33 levels, and suppressed NLRP3 inflammasome and the IL-33/ST2 axis in the kidney. In vitro, co-culturing NLRP3-overexpressing or IL-33 knocked-down rat renal macrophages with NRK-52E cells confirmed that NLRP3 activation in resident macrophages directly upregulates IL-33, which in turn mediates the IL-33/ST2/NF-κB pathway to promote the inflammatory response of renal tubular epithelial cells. Furthermore, a molecular docking model and surface plasmon resonance analysis were utilized to demonstrate a direct interaction between HNK and NLRP3. In conclusion, this study provides a novel anti-LN treatment strategy in which HNK plays a preventive and therapeutic role against LN by suppressing the abnormal crosstalk between renal resident macrophages and renal tubular epithelial cells by inhibiting the activation of the NLRP3/IL-33/ST2 axis.


Assuntos
Nefrite Lúpica , Camundongos , Animais , Ratos , Camundongos Endogâmicos MRL lpr , Interleucina-33 , Proteína 1 Semelhante a Receptor de Interleucina-1 , Proteína 3 que Contém Domínio de Pirina da Família NLR , Inflamassomos , Simulação de Acoplamento Molecular , Rim , Células Epiteliais , Macrófagos , Receptores de Interleucina-1
4.
Front Immunol ; 13: 943827, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35958622

RESUMO

Lupus nephritis (LN), the most severe organ manifestation of systemic lupus erythematosus (SLE), is generally treated with glucocorticoids (GC) in clinical practice, leading to drug resistance and adverse effects in the long term. Fortunately, the combination of GC and traditional Chinese medical prescriptions can attenuate the adverse effects and improve therapeutic efficiency. Hedyotis diffusa Willd (HDW) is one of the most commonly used herbal compounds for LN treatment, which exhibits "heat-clearing" and "detoxification" effects. However, the underlying pharmacological mechanism remains unclear. The present study identified the chemical compounds in HDW extract with UPLC-Q-TOF-MS/MS. A total of 49 components were identified in the HDW extract, and the IL-17 signaling pathway was highly enriched by network pharmacological analysis. MRL/lpr model mice, reflecting the spontaneous development of LN, were used to evaluate the protective activity and investigate the underlying mechanism of the combination treatment. The white blood cell content (WBC), including lymphocytes and neutrophils, cytokines (IL-6, MCP-1, TNF-a), and various autoantibodies (ANA, ab-dsDNA, ab-snRNP/sm) in the blood of MRL/lpr mice were significantly improved by the intragastric administration of HDW. Additionally, the expression of STAT3, IL-17, Ly6G, and MPO in the kidney and neutrophil NETosis were ameliorated with HDW treatment. The pathological and morphological analysis suggested that HDW application could reduce urinary protein levels and inflammatory cell infiltration and inhibit glomerular interstitial cell proliferation. Hence, HDW might ameliorate lupus nephritis by inhibiting IL-6 secretion and STAT3-induced IL-17 expression. The active compounds in HDW were predictively selected with computational methods. The docking affinity of asiatic acid, neoandrographolide to IL-6, glycyrrhetinic acid, oleanolic acid, ursolic acid, and wilforlide A to STAT3 are extremely high. In conclusion, the IL-6 and STAT3/IL-17signaling pathways could be critical regulative targets of HDW on LN.


Assuntos
Hedyotis , Nefrite Lúpica , Animais , Linhagem Celular Tumoral , Hedyotis/química , Interleucina-17 , Interleucina-6 , Nefrite Lúpica/tratamento farmacológico , Camundongos , Camundongos Endogâmicos MRL lpr , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Espectrometria de Massas em Tandem
5.
Zhongguo Zhong Yao Za Zhi ; 47(7): 1754-1764, 2022 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-35534246

RESUMO

Astragali Radix, a medicinal herb for invigorating Qi, has anti-aging, anti-tumor, immunoregulatory, blood sugar-and lipid-lowering, anti-fibrosis, anti-radiation and other pharmacological effects. This article reviewed the studies about the chemical components and pharmacological effects of Astragali Radix. According to the theory of quality markers(Q-markers) of Chinese medicinal materials, we predicted the Q-markers of Astragali Radix from traditional efficacy, chemical component validity, measurability, plant phylogeny, and pharmacokinetis. The results showed that total polysaccharides, flavonoids(e.g., calycosin-7-O-ß-D-glucoside, formononetin, calycosin, quercetin, and ononin), and saponins(e.g., astragalosides Ⅱ, Ⅲ, and Ⅳ) can be taken as the main Q-markers. This review lays a foundation for regulating the quality research and standard establishment of Astragali Radix, and benefits the control and quality supervision of the production process of Astragali Radix and its related products.


Assuntos
Astrágalo , Medicamentos de Ervas Chinesas , Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/farmacologia , Flavonoides , Raízes de Plantas
6.
J Ethnopharmacol ; 284: 114815, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34763039

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Jieduquyuziyin prescription (JP) is a traditional Chinese medicine (TCM) formula. According to both TCM theory and more than a decade of clinical practice, JP has been testified to be effective for systemic lupus erythematosus (SLE) treatment as an approved hospital prescription in China. AIM OF THE STUDY: To determine the effect of JP on the treatment of SLE by glucocorticoid (GC) and to further examine the molecular mechanisms. MATERIALS AND METHODS: We conducted in vivo experiments to estimate the effect of JP on hepatic gluconeogenesis in MRL/lpr mice treated with GC. Additionally, isoproterenol (ISO) induced hepatic gluconeogenesis model and GC-treated MRL/lpr mouse hepatocytes were carried out in vitro experiments to verify the effect of JP on gluconeogenesis. RESULTS: The results showed that JP combined with GC could effectively alleviate the lupus symptoms in MRL/lpr mice and improve the pathological changes of the kidney and liver. And the combination of JP reduced the side effects caused by GC, which was related to the inhibition of GC-induced hepatic gluconeogenesis in MRL/lpr mice. Specifically, JP up-regulated the expression of glucocorticoid receptor (GR) α, phosphoinositide-3-kinase (PI3K) and Akt restrained by GC to reduce the production of forkhead box O1 (FoxO1), peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α), and the gluconeogenic genes phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase). In vivo, the use of JP either alone or with GC could reduce spleen enlargement, high levels of serum antibodies, aggravated urine protein and renal pathological damage in MRL/lpr mice. Furthermore, the glucose content was reduced in the liver of MRL/lpr mice treated with JP, and the liver damage and steatosis were also alleviated. In vitro, the expressions of PI3K and Akt increased and the expressions of FoxO1, PGC-1α, PEPCK and G6Pase decreased after JP treatment in ISO-treated hepatocytes. Compared with MRL/MP mice, we found that JP could significantly inhibit the expression of gluconeogenesis in the hepatocytes of MRL/lpr mice induced by GC to a greater extent. CONCLUSIONS: The therapeutic effect of JP on GC-induced is likely related to hepatic gluconeogenesis, which provides a new perspective to reveal the positive role of JP in SLE.


Assuntos
Medicamentos de Ervas Chinesas/uso terapêutico , Gluconeogênese/efeitos dos fármacos , Fígado/efeitos dos fármacos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Feminino , Glucocorticoides , Humanos , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Fosfatidilinositol 3-Quinases/genética , Fitoterapia , Proteínas Proto-Oncogênicas c-akt/genética
7.
Toxicology ; 462: 152933, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34508822

RESUMO

Lead (Pb) is a toxic metal that affects the male reproductive system. This study aimed to investigate the effects of zinc (Zn) intake between recommended dietary allowances (RDAs) and tolerable upper intake levels (ULs) in preventing male testis damage induced by low-dose Pb. Forty-five mice were randomly divided into control, Pb, and Pb + Zn groups. They were given distilled water ad libitum with 0, 200 mg/L Pb2+, or 15 mg/L Zn2+ mixed with 200 mg/L Pb2+ for 90 consecutive days. The Zn levels in the blood and testis of the Pb group were significantly lower than those of the control group. The Pb levels in the blood and testis of the Pb + Zn group were significantly lower than those of the Pb group. Additionally, a significant decrease in sperm density and viability, with a significant increase in sperm abnormality rate and DNA fragmentation index, was observed in the Pb group. Zn supplementation significantly improved the above sperm parameters. Moreover, Zn supplementation decreased low-dose Pb-induced lipid peroxidation and increased glutathione, total superoxide dismutase (SOD), and copper/Zn-SOD levels. Furthermore, Zn treatment improved glycolysis products and lactate transporters in Pb-treated mouse testes. Our findings suggest that Zn intake between RDAs and UL can act as a therapeutic agent in protecting against the reproductive impairments associated with Pb exposure.


Assuntos
Glicólise/efeitos dos fármacos , Chumbo/toxicidade , Testículo/efeitos dos fármacos , Zinco/farmacologia , Animais , Suplementos Nutricionais , Glutationa/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Espermatozoides/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Zinco/administração & dosagem
8.
J Int Med Res ; 49(5): 3000605211019187, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34044633

RESUMO

OBJECTIVE: Abnormal B cell lymphoma-2 (Bcl-2) and interleukin-19 (IL-19) expression is closely related to systemic lupus erythematosus (SLE) pathogenesis. We aimed to determine whether BCL2 polymorphisms and a single nucleotide polymorphism (SNP) of IL19 are significantly associated with SLE susceptibility and if this is affected by synergism between IL19 and BCL2 genotypes. METHODS: This observational cohort study randomly enrolled 150 patients with SLE and 150 healthy controls. Major BCL2 and IL19 allele and genotype distributions were examined in the two groups. The IL19 SNP rs2243188 was determined using the TaqMan-MGB probe method. The synergistic effect between BCL2 and IL19 and clinical symptoms of SLE was also analyzed. RESULTS: The distribution of major BCL2 genotypes and common BCL2 alleles, especially for genotypes 191, 193, and 197, differed significantly between patients and controls. A significant difference in the dominant genetic model was also observed between groups, but not in the recessive model. The risk of disease in individuals who carried both 195-bp BCL2 and 138-bp IL19 susceptibility alleles was higher than in those carrying either allele alone. CONCLUSIONS: This preliminary study suggested that BCL2 polymorphisms and the IL19 SNP rs2243188 are closely related to the pathogenesis of SLE.


Assuntos
Lúpus Eritematoso Sistêmico , Polimorfismo de Nucleotídeo Único , Alelos , Estudos de Casos e Controles , Frequência do Gene , Predisposição Genética para Doença , Genótipo , Humanos , Interleucinas/genética , Lúpus Eritematoso Sistêmico/genética , Polimorfismo de Nucleotídeo Único/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética
9.
J Cancer ; 12(2): 358-370, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33391432

RESUMO

Cyclic adenosine monophosphate (cAMP) is an essential second messenger that widely distributed among prokaryotic and eukaryotic organisms. cAMP can regulate various biological processes, including cell proliferation, differentiation, apoptosis and immune functions. Any dysregulation or alteration of cAMP signaling may cause cell metabolic disorder, immune dysfunction and lead to disease or cancer. This study aimed to conduct a scientometric analysis of cAMP signaling system in cancer field, and explored the research trend, hotspots and frontiers from the past decade. Relevant literatures published from 2009 to 2019 were collected in the Web of Science Core Collection database. EndNote X9 was used to remove duplicate articles, and irrelevant articles were manually filtered. Bibliometric analyses were completed by CiteSpace V. A total of 4306 articles were included in this study. The number of related literatures published each year is gradually increasing. Most of them belong to "Biochemistry & Molecular Biology", "Oncology", "Cell Biology", "Pharmacology & Pharmacy" and "Endocrinology & Metabolism" areas. In the past decade, USA, China, and Japan contributed the most to the research of cAMP signaling system in cancer. The frontiers and hotspots of cAMP signaling pathway system related to cancer fields mainly focused on cancer cell apoptosis, metastasis, and multiple tumors occurrence in patients with Carney complex. Intervention of the cAMP metabolic pathway may be a potential and promising therapeutic strategy for controlling clinical cancer and tumor diseases.

10.
Front Pharmacol ; 11: 1049, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32760274

RESUMO

Jieduquyuziyin prescription (JP) has been used to treat systemic lupus erythematosus (SLE). Although the effectiveness of JP in the treatment of SLE has been clinically proven, the underlying mechanisms have yet to be completely understood. We observed the therapeutic actions of JP in MRL/lpr mice and their bone marrow-derived macrophages (BMDMs) and the potential mechanism of their inhibition of inflammatory activity. To estimate the effect of JP on suppressing inflammatory activity, BMDMs of MRL/lpr and MRL/MP mice were treated with JP-treated serum, and MRL/lpr mice were treated by JP for 8 weeks. Among them, JP and its treated serum were subjected to quality control, and BMDMs were separated and identified. The results showed that in the JP group of BMDMs stimulated by Lipopolysaccharide (LPS) in MRL/lpr mice, the secretion of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) reduced, and the expressions of Interleukin-1 receptor-associated kinase 1 (IRAK1) and its downstream nuclear factor κB (NF-κB) pathway decreased. Meanwhile, the alleviation of renal pathological damage, the decrease of urinary protein and serum anti-dsDNA contents, the inhibition of TNF-α level, and then the suppression of the IRAK1-NF-κB inflammatory signaling in the spleen and kidney, confirmed that the therapeutic effect of JP. These results demonstrated that JP could inhibit the inflammatory activity of MRL/lpr mice and their BMDMs by suppressing the activation of IRAK1-NF-κB signaling and was supposed to be a good choice for the treatment of SLE.

11.
Artigo em Inglês | MEDLINE | ID: mdl-32102460

RESUMO

Epidemiological studies on residential radon exposure and the risk of histological types of lung cancer have yielded inconsistent results. We conducted a meta-analysis on this topic and updated previous related meta-analyses. We searched the databases of Cochrane Library, Embase, PubMed, Web of Science and Chinese National Knowledge Infrastructure for papers published up to 13 November 2018. The pooled odds ratio (OR) and 95% confidence interval (CI) were calculated using fixed and random effects models. Subgroup and dose‒response analyses were also conducted. This study was registered with PROSPERO (No. CRD42019127761). A total of 28 studies, which included 13,748 lung cancer cases and 23,112 controls, were used for this meta-analysis. The pooled OR indicated that the highest residential radon exposure was significantly associated with an increased risk of lung cancer (OR = 1.48, 95% CI = 1.26-1.73). All histological types of lung cancer were associated with residential radon. Strongest association with small-cell lung carcinoma (OR = 2.03, 95% CI = 1.52-2.71) was found, followed by adenocarcinoma (OR = 1.58, 95% CI = 1.31-1.91), other histological types (OR = 1.54, 95% CI = 1.11-2.15) and squamous cell carcinoma (OR = 1.43, 95% CI = 1.18-1.74). With increasing residential radon levels per 100 Bq/m3, the risk of lung cancer, small-cell lung carcinoma and adenocarcinoma increased by 11%, 19% and 13%, respectively. This meta-analysis provides new evidence for a potential relationship between residential radon and all histological types of lung cancer.


Assuntos
Adenocarcinoma/epidemiologia , Poluição do Ar em Ambientes Fechados/efeitos adversos , Neoplasias Pulmonares/epidemiologia , Neoplasias Induzidas por Radiação/epidemiologia , Radônio/administração & dosagem , Carcinoma de Pequenas Células do Pulmão/epidemiologia , Estudos de Casos e Controles , Exposição Ambiental/efeitos adversos , Feminino , Habitação , Humanos , Masculino , Fatores de Risco
12.
J Ethnopharmacol ; 253: 112604, 2020 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-31972326

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Northeast China is one of the Korean Red Ginseng (KRG) producing areas. As a health care product, KRG is popular amongst Chinese people. However, few studies have reported the side effects of overusing KRG. AIM OF THE STUDY: The main purpose of this study is to explore the mechanism of Korean Red Ginseng (KRG)-induced "Shanghuo" (excessive heat). MATERIALS AND METHODS: After the baseline characteristics were evaluated, 30 healthy volunteers were administrated with 3g of KRG for 10-16 days and diagnosed with "Shanghuo". The volunteers prior to the administration of KRG were considered as the control group. The volunteers after being diagnosed with "Shanghuo" (excessive heat) were considered as "Shanghuo" group. The two groups were assessed by the tests of serum metabolic products, Succinate Dehydrogenase (SDH) activity, and mRNA expressions of adenosine monophosphate (AMP)-activated protein kinase (AMPK), PPARG Coactivator 1 Alpha (PGC-1α) and Nuclear Respiratory Factor 1 (NRF1). RESULTS: Most of the serum metabolites in the "Shanghuo" group were increased compared with the control group, from high to low including serine, valine, heptacosane, xylose, glycerol 1-monostearate, d-glucose, 3-pyridinol, glyceryl palmitate, urea, phosphoric acid, glycerol, stearic acid, palmitic acid, cyclohexaneacetic acid. Only cholesterol was significantly reduced, The SDH activity and the mRNA expressions of AMPK, PGC-1α and NRF1 were significantly increased in the "Shanghuo" group. CONCLUSIONS: Overconsumption of KRG could induce "Shanghuo", which has a close relationship with an accelerated TCA cycle and the increased AMPK activity.


Assuntos
Ciclo do Ácido Cítrico/efeitos dos fármacos , Doenças Metabólicas/induzido quimicamente , Panax/química , Extratos Vegetais/efeitos adversos , Proteínas Quinases Ativadas por AMP/metabolismo , Adulto , Estudos Controlados Antes e Depois , Feminino , Humanos , Masculino , Extratos Vegetais/administração & dosagem , Adulto Jovem
13.
Nat Commun ; 10(1): 2914, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31266968

RESUMO

The deubiquitylase OTUD3 plays a suppressive role in breast tumorigenesis through stabilizing PTEN protein, but its role in lung cancer remains unclear. Here, we demonstrate that in vivo deletion of OTUD3 indeed promotes breast cancer development in mice, but by contrast, it slows down KrasG12D-driven lung adenocarcinoma (ADC) initiation and progression and markedly increases survival in mice. Moreover, OTUD3 is highly expressed in human lung cancer tissues and its higher expression correlates with poorer survival of patients. Further mechanistic studies reveal that OTUD3 interacts with, deubiquitylates and stabilizes the glucose-regulated protein GRP78. Knockdown of OTUD3 results in a decrease in the level of GRP78 protein, suppression of cell growth and migration, and tumorigenesis in lung cancer. Collectively, our results reveal a previously unappreciated pro-oncogenic role of OTUD3 in lung cancer and indicate that deubiquitylases could elicit tumor-suppressing or tumor-promoting activities in a cell- and tissue-dependent context.


Assuntos
Proteínas de Choque Térmico/metabolismo , Neoplasias Pulmonares/enzimologia , Proteases Específicas de Ubiquitina/metabolismo , Animais , Carcinogênese , Linhagem Celular Tumoral , Proliferação de Células , Chaperona BiP do Retículo Endoplasmático , Feminino , Proteínas de Choque Térmico/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Nus , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteases Específicas de Ubiquitina/genética
14.
Artigo em Inglês | MEDLINE | ID: mdl-30934693

RESUMO

Background: Monocarboxylate transport protein 1 (MCT1) has been defined as a critical regulator in tumor energy metabolism, but bibliometric analysis of MCT1 research is rare. This study aimed to comprehensively analyze the global scientific output of MCT1 research and explore the hotspots and frontiers from the past decade. Methods: Publications and their literature information from 2008 to 2018 were retrieved from the Web of Science Core Collection database. We used Microsoft Excel 2016 to detect the trend of annual numbers of publications, and used Citespace V software as the bibliometric method to analyze the research areas, countries, institutions, authors, journals, research hotspots, and research frontiers. Results: A total of 851 publications were identified with an increasing trend. Relevant literature mainly focused on the field of oncology. The most prolific country and institution were the USA and University of Minho, respectively. Baltazar was the most productive author while Halestrap had the highest co-citations. The hottest topics in MCT1 were hypoxia, gene expression, and CD147 over the last decade. The three research frontier topics were proliferation, tumor cell, and resistance. The special role of MCT1 in human tumor cells has become the focus for scholars recently. Conclusion: The development prospects of MCT1 research could be expected and researchers should pay attention to the clinical significance of MCT1 inhibitors as anti-cancer or immunosuppressive drugs and the possibility of drug-resistance formation.


Assuntos
Bibliometria , Transportadores de Ácidos Monocarboxílicos/fisiologia , Publicações Periódicas como Assunto/tendências , Pesquisa/tendências , Simportadores/fisiologia , Bases de Dados Factuais , Humanos
15.
Biomolecules ; 8(4)2018 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-30282943

RESUMO

The pathogenesis of systemic lupus erythematosus (SLE) remains elusive. It appears that serum lipid metabolism is aberrant in SLE patients. Determination of lipid profiles in the serum of SLE patients may provide insights into the underlying mechanism(s) leading to SLE and may discover potential biomarkers for early diagnosis of SLE. This study aimed to identify and quantify the profile of serum lipids in SLE patients (N = 30) with our powerful multi-dimensional mass spectrometry-based shotgun lipidomics platform. Multivariate analysis in the form of partial least squares-discriminate analysis was performed, and the associations between the changed lipids with cytokines and SLE disease activity index (SLEDAI) were analyzed using a multiple regression method. The results of this study indicated that the composition of lipid species including diacyl phosphatidylethanolamine (dPE) (16:0/18:2, 18:0/18:2, 16:0/22:6, 18:0/20:4, and 18:0/22:6), 18:2 lysoPC (LPC), and ceramide (N22:0 and N24:1) was significantly altered in SLE patients with p < 0.05 and variable importance of the projection (VIP) > 1 in partial least squares-discriminate analysis (PLS-DA). There existed significant associations between IL-10, and both 18:0/18:2 and 16:0/22:6 dPE species with p < 0.0001 and predicting 85.7 and 95.8% of the variability of IL-10 levels, respectively. All the altered lipid species could obviously predict IL-10 levels with F (8, 21) = 3.729, p = 0.007, and R² = 0.766. There was also a significant correlation between the SLEDAI score and 18:0/18:2 dPE (p = 0.031) with explaining 22.6% of the variability of SLEDAI score. Therefore, the panel of changed compositions of dPE and ceramide species may serve as additional biomarkers for early diagnosis and/or prognosis of SLE.


Assuntos
Biomarcadores/sangue , Metabolismo dos Lipídeos/genética , Lipídeos/sangue , Lúpus Eritematoso Sistêmico/sangue , Adulto , Citocinas/sangue , Feminino , Humanos , Interleucina-10/sangue , Interleucina-6/sangue , Lipídeos/genética , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/patologia , Masculino , Pessoa de Meia-Idade
16.
Nat Commun ; 9(1): 1023, 2018 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-29523786

RESUMO

Whereas white adipose tissue depots contribute to the development of metabolic diseases, brown and beige adipose tissue has beneficial metabolic effects. Here we show that CDK6 regulates beige adipocyte formation. We demonstrate that mice lacking the CDK6 protein or its kinase domain (K43M) exhibit significant increases beige cell formation, enhanced energy expenditure, better glucose tolerance, and improved insulin sensitivity, and are more resistant to high-fat diet-induced obesity. Re-expression of CDK6 in Cdk6 -/- mature or precursor cells, or ablation of RUNX1 in K43M mature or precursor cells, reverses these phenotypes. Furthermore, RUNX1 positively regulates the expression of Ucp-1 and Pgc1α by binding to proximal promoter regions. Our findings indicate that CDK6 kinase activity negatively regulates the conversion of fat-storing cells into fat-burning cells by suppressing RUNX1, and suggest that CDK6 may be a therapeutic target for the treatment of obesity and related metabolic diseases.


Assuntos
Tecido Adiposo Marrom/fisiologia , Tecido Adiposo Branco/fisiologia , Subunidade alfa 2 de Fator de Ligação ao Core/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/metabolismo , Regulação da Expressão Gênica , Adipócitos/citologia , Animais , Composição Corporal , Diferenciação Celular , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Cruzamentos Genéticos , Quinase 6 Dependente de Ciclina/genética , Dieta Hiperlipídica , Feminino , Perfilação da Expressão Gênica , Teste de Tolerância a Glucose , Masculino , Doenças Metabólicas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/genética , Obesidade/metabolismo , Consumo de Oxigênio , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Fenótipo , Proteína Desacopladora 1/metabolismo
17.
J Invest Dermatol ; 138(7): 1609-1619, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29408459

RESUMO

Adaptation to endoplasmic reticulum (ER) stress has been indicated as a driver of malignancy and resistance to therapy in human melanoma. However, the relationship between cancer stem cells and adaptation to ER stress remains unclear. Here, we show that the ratio of cancer stem cells is increased in ER stress-resistant melanoma cells, which inhibit ER stress-induced apoptosis and promote tumorigenesis. Further mechanistic studies showed that HOXB9 triggered by ER stress favors cancer stem cell self-renewal and enhances ER stress resistance. HOXB9 directly binds to the promoter of microRNA-765 and facilitates its transcription, which in turn targets FOXA2, resulting in a FOXA2 decrease and cancer stem cell increase. Additionally, an increase in HOXB9 promotes melanoma growth and inhibits cell apoptosis in a mouse xenograft model. Elevated HOXB9 is found in human melanoma tissues, which is associated with microRNA-765 up-regulation and FOXA2 decreases. Thus, our data showed that the HOXB9-dependent, microRNA-765-mediated FOXA2 pathway contributes to the survival of melanoma under ER stress by maintaining the properties of cancer stem cells.


Assuntos
Fator 3-beta Nuclear de Hepatócito/genética , Proteínas de Homeodomínio/metabolismo , Melanoma/patologia , MicroRNAs/genética , Células-Tronco Neoplásicas/patologia , Neoplasias Cutâneas/patologia , Animais , Apoptose/genética , Carcinogênese/patologia , Linhagem Celular Tumoral , Autorrenovação Celular/genética , Estresse do Retículo Endoplasmático/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Fator 3-beta Nuclear de Hepatócito/metabolismo , Proteínas de Homeodomínio/genética , Humanos , Melanoma/genética , Camundongos , Camundongos Nus , MicroRNAs/antagonistas & inibidores , MicroRNAs/metabolismo , RNA Interferente Pequeno , Transdução de Sinais/genética , Análise Serial de Tecidos , Regulação para Cima , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Opt Express ; 26(26): 34200-34213, 2018 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-30650847

RESUMO

A strongly coupled finite element model of the optical breakdown during femtosecond laser pulse interaction, with different morphology of aluminum nanoparticles in water, was developed. This model provided new insight into the optical breakdown dependence on the nanoparticles' morphology and assembly. This model was used to theoretically investigate a 300 fs laser pulse interaction with uncoupled and plasmon coupled aluminum coated silica shell nanoparticles. This study revealed how the nanoparticles' one-dimensional assembly affected the optical breakdown threshold of its surrounding mediums. The optical breakdown threshold had much stronger dependence on the optical near-field enhancement than on the nanostructure's extinction cross-section. The maximum electric field that is outside of the aluminum nanoparticles, with 2 nm silica shell and 2 nm gap, was more than 4 times greater to the one inside of the aluminum nanoparticles. For dimer and trimer configuration, the calculated lattice cross-section temperatures at each breakdown threshold were below their melting point. It is suggested that water could be ionized by aluminum/silica (core/shell) nanostructure during femtosecond laser exposures without nanoparticles consumption. This model could increase understanding of the aluminum nanoparticle-mediated optical breakdown in water.

19.
Mol Cell ; 65(2): 296-309, 2017 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-28065600

RESUMO

In mammalian cells, histone deacetylase (HDAC) and Sirtuin (SIRT) are two families responsible for removing acetyl groups from acetylated proteins. Here, we describe protein deacetylation coupled with deacetylimination as a function of lysyl oxidase (LOX) family members. LOX-like 3 (Loxl3) associates with Stat3 in the nucleus to deacetylate and deacetyliminate Stat3 on multiple acetyl-lysine sites. Surprisingly, Loxl3 N-terminal scavenger receptor cysteine-rich (SRCR) repeats, rather than the C-terminal oxidase catalytic domain, represent the major deacetylase/deacetyliminase activity. Loxl3-mediated deacetylation/deacetylimination disrupts Stat3 dimerization, abolishes Stat3 transcription activity, and restricts cell proliferation. In Loxl3-/- mice, Stat3 is constitutively acetylated and naive CD4+ T cells are potentiated in Th17/Treg cell differentiation. When overexpressed, the SRCR repeats from other LOX family members can catalyze protein deacetylation/deacetylimination. Thus, our findings delineate a hitherto-unknown mechanism of protein deacetylation and deacetylimination catalyzed by lysyl oxidases.


Assuntos
Aminoácido Oxirredutases/metabolismo , Linfócitos T CD4-Positivos/enzimologia , Colite/enzimologia , Processamento de Proteína Pós-Traducional , Fator de Transcrição STAT3/metabolismo , Acetilação , Aminoácido Oxirredutases/deficiência , Aminoácido Oxirredutases/genética , Animais , Linfócitos T CD4-Positivos/imunologia , Catálise , Diferenciação Celular , Núcleo Celular/enzimologia , Proliferação de Células , Colite/genética , Colite/imunologia , Modelos Animais de Doenças , Genótipo , Células HEK293 , Células HeLa , Humanos , Células MCF-7 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Domínios Proteicos , Multimerização Proteica , Interferência de RNA , Fator de Transcrição STAT3/genética , Linfócitos T Reguladores/enzimologia , Linfócitos T Reguladores/imunologia , Células Th17/enzimologia , Células Th17/imunologia , Transcrição Gênica , Transfecção
20.
Oncotarget ; 7(47): 78069-78082, 2016 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-27801666

RESUMO

M2-type pyruvate kinase (PKM2) contributes to the Warburg effect. However, it remains unknown as to whether PKM2 has an inhibitory effect on mitochondrial function. We report in this work that PKM2 overexpression inhibits the expression of Drp1 and results in the mitochondrial fusion. The ATP production was found to be decreased, the mtDNA copy number elevated and the expression level of electron transport chain (ETC) complex I, III, V depressed in PKM2 overexpressed cells. PKM2 overexpression showed a decreased p53 protein level and a shorter p53 half-life. In contrast, PKM2 knockdown resulted in increased p53 expression and prolonged half-life of p53. PKM2 could directly bind with both p53 and MDM2 and promote MDM2-mediated p53 ubiquitination. The dimeric PKM2 significantly suppressed p53 expression compared with the other PKM2 mutants. The reverse relationship between PKM2 and Drp1 was further confirmed in a large number of clinical samples. Taken together, the present results highlight a new mechanism that link PKM2 to mitochondrial function, based on p53-Drp1 axis down regulation, revealing a novel therapeutic target in patients with abnormal mitochondria.


Assuntos
Proteínas de Transporte/biossíntese , Proteínas de Membrana/biossíntese , Dinâmica Mitocondrial/fisiologia , Hormônios Tireóideos/biossíntese , Proteína Supressora de Tumor p53/metabolismo , Proteínas de Transporte/metabolismo , Células HCT116 , Células HeLa , Humanos , Proteínas de Membrana/metabolismo , Hormônios Tireóideos/metabolismo , Transfecção , Proteínas de Ligação a Hormônio da Tireoide
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA