Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Syst Biol Reprod Med ; 70(1): 131-138, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38833557

RESUMO

Gonadotropin-releasing hormone (GnRH) vaccines have been successfully used for the inhibition of gonadal development and function, but current GnRH-based vaccines often present variability in the response. Cross-reactive material 197 (CRM197) has been used as carrier molecules to enhance an immune response to associated antigens. So, the synthetic mammalian tandem-repeated GnRH hexamer (GnRH6) gene was integrated into the expression plasmid pET-21a. Recombinant GnRH6-CRM197 protein was subsequently overexpressed in Escherichia coli strain BL21 and purified through Nickel column affinity chromatography and the antigenicity and biological effects of GnRH6-CRM197 were evaluated in rats. Sixteen 4-month-old adult male rats were randomly divided into two groups: the GnRH6-CRM197 group (n = 8) and the control group (n = 8). The GnRH6-CRM197 group rats were subcutaneously immunized with 100 µg of GnRH6-CRM197, administered thrice at 2-week intervals with GnRH6-CRM197.The control group received only a white oil adjuvant. Following the initial immunization, the weights of animals were recorded, and blood samples were collected from the orbital sinus at 4, 4.5, 5, 5.5, 6, 6.5, and 7 months. Serum antibody titers and testosterone concentrations were quantified using ELISA and CLIA, respectively. Additionally, testicular tissues were collected for morphological examination. The results revealed a significant increase in serum GnRH antibody titers (p < 0.05), but a significant decrease in serum testosterone concentrations (p < 0.05), and the weight, length, width, and girth of the testis, and the number of spermatogonia cells, spermatocytes, and sperm cells in the immunized rats. Furthermore, seminiferous tubules revealed significant atrophy and no sperm were observed in the immunized animals. Thus, GnRH6-CRM197 may be an effective antigen and a potential immunocastration vaccine.


Assuntos
Hormônio Liberador de Gonadotropina , Animais , Masculino , Hormônio Liberador de Gonadotropina/imunologia , Ratos , Testículo/efeitos dos fármacos , Testosterona/sangue , Ratos Sprague-Dawley , Imunização
2.
J Vet Med Sci ; 86(5): 497-506, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38479882

RESUMO

The study aimed to investigate the effect of Grid1, encoding the glutamate ionotropic receptor delta type subunit 1 (GluD1), on puberty onset in female rats. Grid1 mRNA and protein expression was detected in the hypothalamus of female rats at prepuberty and puberty. The levels of Grid1 mRNA in the hypothalamus, the fluorescence intensity in the arcuate nucleus and paraventricular nucleus of the prepubertal rats was significantly lower than pubertal. Additionally, the expression of Grid1 was suppressed in primary hypothalamus cells and prepubertal rat. Finally, investigated the effect of Grid1 knockdown on puberty onset and reproductive performance. Treatment of hypothalamic neurons with LV-Grid1 decreased the level of Grid1 and Rfrp-3 (encoding RFamide-related peptide 3) mRNA expression, but increased the Gnrh (encoding gonadotropin-releasing hormone) mRNA levels. After an ICV injection, the time for the rat vaginal opening occurred earlier. Moreover, Gnrh mRNA expression was increased, whereas Rfrp-3 mRNA expression was decreased in the hypothalamus. The concentration of progesterone (P4) in the serum was significantly decreased compare with control group. Ovary hematoxylin-eosin staining revealed that the LV-Grid1 group mainly contained primary and secondary follicles. The reproductive performance of the rats was not affected by the Grid1 knockdown. Therefore, Grid1 may affect the onset of puberty in female rats by regulating the levels of Gnrh, and Rfrp-3 in the hypothalamus, as well as the concentrations of P4, but not reproduction performance.


Assuntos
Hormônio Liberador de Gonadotropina , Hormônios Hipotalâmicos , Hipotálamo , Maturidade Sexual , Animais , Feminino , Ratos , Hormônio Liberador de Gonadotropina/metabolismo , Hormônio Liberador de Gonadotropina/genética , Hipotálamo/metabolismo , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Neuropeptídeos/genética , Progesterona/sangue , Progesterona/metabolismo , Ratos Sprague-Dawley , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Maturidade Sexual/fisiologia
3.
BMC Genomics ; 24(1): 621, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37853328

RESUMO

BACKGROUND: Puberty marks the end of childhood and achieve sexual maturation and fertility. The role of hypothalamic proteins in regulating puberty onset is unclear. We performed a comprehensive differential proteomics and phosphoproteomics analysis in prepubertal and pubertal goats to determine the roles of hypothalamic proteins and phosphoproteins during the onset of puberty. RESULTS: We used peptide and posttranslational modifications peptide quantification and statistical analyses, and identified 69 differentially expressed proteins from 5,057 proteins and 576 differentially expressed phosphopeptides from 1574 phosphorylated proteins. Combined proteomic and phosphoproteomics, 759 correlated proteins were identified, of which 5 were differentially expressed only at the protein level, and 201 were only differentially expressed at the phosphoprotein level. Pathway enrichment analyses revealed that the majority of correlated proteins were associated with glycolysis/gluconeogenesis, Fc gamma R-mediated phagocytosis, focal adhesion, GABAergic synapse, and Rap1 signaling pathway. These pathways are related to cell proliferation, neurocyte migration, and promoting the release of gonadotropin-releasing hormone in the hypothalamus. CTNNB1 occupied important locations in the protein-protein interaction network and is involved in focal adhesion. CONCLUSION: The results demonstrate that the proteins differentially expression only at the protein level or only differentially expressed at the phosphoprotein level and their related signalling pathways are crucial in regulating puberty in goats. These differentially expressed proteins and phosphorylated proteins may constitute the proteomic backgrounds between the two different stages.


Assuntos
Cabras , Proteômica , Animais , Feminino , Humanos , Cabras/metabolismo , Hipotálamo/metabolismo , Puberdade , Maturidade Sexual/fisiologia , Hormônio Liberador de Gonadotropina/metabolismo , Fosfoproteínas/metabolismo
4.
Theriogenology ; 207: 72-81, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37269598

RESUMO

This study investigated how lncRNA Meg3 affects the onset of puberty in female rats. We determined Meg3 expression in the hypothalamus-pituitary-ovary axis of female rats at the infancy, prepubertal, pubertal, and adult life stages, using quantitative reverse transcription polymerase chain reaction (qRT-PCR). We also assessed the effects of Meg3 knockdown on the expression levels of puberty-related genes and Wnt/ß-catenin proteins in the hypothalamus, time of puberty onset, levels of reproductive genes and hormones, and ovarian morphology in female rats. Meg3 expression in the ovary varied significantly between prepuberty and puberty (P < 0.01). Meg3 knockdown decreased the expression of Gnrh, and Kiss1 mRNA (P < 0.05) and increased the expression of Wnt (P < 0.01) and ß-catenin proteins (P < 0.05) in the hypothalamic cells. Onset of puberty in Meg3 knockdown rats was delayed compared to the control group (P < 0.05). Meg3 knockdown decreased Gnrh mRNA levels (P < 0.05) and increased Rfrp-3 mRNA levels (P < 0.05) in the hypothalamus. The serum concentrations of progesterone (P4) and estradiol (E2) of Meg3 knockdown rats were lower than those in the control animals (P < 0.05). Higher longitudinal diameter and ovary weight were found in Meg3 knockdown rats (P < 0.05). These findings suggest that Meg3 regulates the expression of Gnrh, Kiss-1 mRNA and Wnt/ß-catenin proteins in the hypothalamic cells, and Gnrh, Rfrp-3 mRNA of the hypothalamus and the serum concentration of P4 and E2, and its knockdown delays the onset of puberty in female rats.


Assuntos
RNA Longo não Codificante , Ratos , Feminino , Animais , RNA Longo não Codificante/metabolismo , Ratos Sprague-Dawley , Hormônio Liberador de Gonadotropina/metabolismo , Hipotálamo/metabolismo , Kisspeptinas/metabolismo , Maturidade Sexual/fisiologia , RNA Mensageiro/metabolismo
5.
J Ovarian Res ; 16(1): 69, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37024956

RESUMO

BACKGROUND: Age at puberty is an important factor affecting goat fertility, with endocrine and genetic factors playing a crucial role in the onset of puberty. To better understand the relationship between endocrine and genetic factors and mechanisms underlying puberty onset in goats, reproductive hormone levels were analyzed by ELISA and ultraperformance liquid chromatography-multiple reaction monitoring-multistage/mass spectrometry and RNA sequencing was performed to analyze ovarian genes. RESULTS: Serum follicle stimulating hormone, luteinizing hormone, estradiol, 11-deoxycortisol, 11-deoxycorticosterone, corticosterone, cortisone, and cortisol levels were found to be higher but progesterone were lower in pubertal goats as compared to those in prepubertal goats (P < 0.05). A total of 18,139 genes were identified in cDNA libraries, and 75 differentially expressed genes (DEGs) were identified (|log2 fold change|≥ 1, P ≤ 0.05), of which 32 were significantly up- and 43 were down-regulated in pubertal goats. Gene ontology enrichment analyses indicated that DEGs were mainly involved in "metabolic process," "signaling," "reproduction," and "growth." Further, DEGs were significantly enriched in 91 Kyoto Encyclopedia of Genes and Genomes pathways, including estrogen signaling pathway, steroid hormone biosynthesis, and cAMP signaling pathway. Bioinformatics analysis showed that PRLR and THBS1 were highly expressed in pubertal ovaries, and ZP3, ZP4, and ASTL showed low expression, suggesting their involvement in follicular development and lutealization. CONCLUSIONS: To summarize, serum hormone changes and ovarian DEGs expression were investigated in our study. Further studies are warranted to comprehensively explore the functions of DEGs in goat puberty.


Assuntos
Cabras , Ovário , Animais , Feminino , Ovário/metabolismo , Cabras/genética , Hormônio Luteinizante , Hormônio Foliculoestimulante , Estradiol , Perfilação da Expressão Gênica
6.
BMC Genomics ; 23(1): 507, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35831802

RESUMO

BACKGROUND: Changes in the abundance of ovarian proteins play a key role in the regulation of reproduction. However, to date, no studies have investigated such changes in pubescent goats. Herein we applied isobaric tags for relative and absolute quantitation (iTRAQ) and liquid chromatography-tandem mass spectrometry to analyze the expression levels of ovarian proteins in pre-pubertal (n = 3) and pubertal (n = 3) goats. RESULTS: Overall, 7,550 proteins were recognized; 301 (176 up- and 125 downregulated) were identified as differentially abundant proteins (DAPs). Five DAPs were randomly selected for expression level validation by Western blotting; the results of Western blotting and iTRAQ analysis were consistent. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis indicated that DAPs were enriched in olfactory transduction, glutathione metabolism, and calcium signaling pathways. Besides, gene ontology functional enrichment analysis revealed that several DAPs enriched in biological processes were associated with cellular process, biological regulation, metabolic process, and response to stimulus. Protein-protein interaction network showed that proteins interacting with CDK1, HSPA1A, and UCK2 were the most abundant. CONCLUSIONS: We identified 301 DAPs, which were enriched in olfactory transduction, glutathione metabolism, and calcium signaling pathways, suggesting the involvement of these processes in the onset of puberty. Further studies are warranted to more comprehensively explore the function of the identified DAPs and aforementioned signaling pathways to gain novel, deeper insights into the mechanisms underlying the onset of puberty.


Assuntos
Cabras , Proteômica , Animais , Feminino , Glutationa , Ovário , Proteômica/métodos , Maturidade Sexual
7.
Reprod Biol Endocrinol ; 20(1): 100, 2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35821045

RESUMO

Insulin-like growth factor-binding protein-5 (IGFBP-5) has recently been shown to alter the reproductive capacity by regulating insulin-like growth factor (IGF) bioavailability or IGF-independent effects. The present study aimed to investigate the effect and mechanism of IGFBP-5 on the onset of puberty in female rats. Immunofluorescence and real-time quantitative PCR were used to determine the expression and location of IGFBP-5 mRNA and protein distribution in the infant's hypothalamus-pituitary-ovary (HPO) axis prepuberty, peripuberty, puberty and adult female rats. Prepubertal rats with IGFBP-5 intracerebroventricular (ICV) were injected to determine the puberty-related genes expression and the concentrations of reproductive hormones. Primary hypothalamic cells were treated with IGFBP-5 to determine the expression of puberty-related genes and the Akt and mTOR proteins. Results showed that Igfbp-5 mRNA and protein were present on the HPO axis. The addition of IGFBP-5 to primary hypothalamic cells inhibited the expression of Gnrh and Igf-1 mRNAs (P < 0.05) and increased the expression of AKT and mTOR protein (P < 0.01). IGFBP-5 ICV-injection delayed the onset of puberty, reduced Gnrh, Igf-1, and Fshß mRNAs, and decreased the concentrations of E2, P4, FSH,serum LH levels and the ovaries weight (P < 0.05). More corpus luteum and fewer primary follicles were found after IGFBP-5 injection (P < 0.05).


Assuntos
Proteína 5 de Ligação a Fator de Crescimento Semelhante à Insulina , Puberdade , Animais , Feminino , Hormônio Liberador de Gonadotropina/metabolismo , Proteína 5 de Ligação a Fator de Crescimento Semelhante à Insulina/biossíntese , Proteína 5 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Puberdade/genética , Puberdade/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos
8.
Theriogenology ; 184: 61-72, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35279534

RESUMO

Spermatogonial stem cells (SSCs) provide a foundation for spermatogenesis, but the mechanism of SSC proliferation is still poorly understood. To investigate whether and how ascorbic acid (AA) regulates the growth of mouse SSCs in vitro, the SSCs were cultured in different concentration AA medium for 14 days. The proliferation, apoptosis and the reactive oxygen species (ROS) levels of SSCs in different AA groups were respectively detected. Moreover, the SSC activity in 40 µg/mL AA group and the control was tested by a transplantation assay. To explore the mechanism of AA regulating mouse SSCs proliferation, the dishevelled homolog 2 (DVL2) and nucleoredoxin (NRX) protein levels, the expression of axis inhibition protein 2 (Axin2), leucine-rich G-protein coupled receptor 5 (Lgr5), B-cell lymphoma-2 (Bcl-2), BCL2-Associated X (Bax), c-myc and cyclin D1 genes in Wnt/ß-catenin pathway were respectively confirmed. The results showed that the adding concentration of AA did not affect the main shape of SSCs. A 40 µg/mL AA in culture medium promoted the proliferation, and decreased the ROS production and apoptosis rate of SSCs. Moreover, colonization efficiency in the seminiferous tubules of the recipient testis in 40 µg/mL AA group was higher compared with the control group by a transplantation assay. Finally, the appropriate ROS in the 40 µg/mL AA group further adjust the levels of DVL2 and NRX protein in the Wnt/ß-catenin pathway to maintain the nuclear intensity of ß-catenin, in turn, the expression of apoptosis gene Bax decreased, while the expression of Bcl2, Axin2, Lgr5, c-myc and cyclin D1 genes increased. The study confirmed that AA adjusts the endogenous ROS level to impact on SSC proliferation in a dose-dependent manner by Wnt/ß-catenin signaling pathway.


Assuntos
Ácido Ascórbico , beta Catenina , Animais , Ácido Ascórbico/farmacologia , Proliferação de Células/genética , Masculino , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Via de Sinalização Wnt/genética , Proteína X Associada a bcl-2 , beta Catenina/genética , beta Catenina/metabolismo
9.
Front Immunol ; 13: 1023104, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36713429

RESUMO

The present study aimed to reveal the effects of immunocastration on the development of the immune system in rats. Seventy rats were randomly assigned into two groups: Control (n = 35) and immunized (n = 35). Twenty-day-old rats were immunized with gonadotropin-releasing hormone (GnRH) and booster immunization was administered every two weeks (three immunizations in total). From 20-day-old rats, we collected samples every two weeks, including five immunized rats and five control rats (seven collections in total). We collected blood samples, testicles, thymuses, and spleens. The results showed that GnRH immunization increased the GnRH antibody titers and reduced the testosterone concentration (both P < 0.05). Compared with the control group, the number of CD4+CD8- cells, CD4-CD8+ cells, and CD4+CD8+ cells increased (P < 0.05) whereas the number of CD4-CD8- cells and CD4+CD25+ cells reduced in the immunized group (P < 0.05) over time. GnRH immunization also increased the relative weights of thymus and spleen (P < 0.05), serum concentrations of interleukin (IL)-2, IL-4, IL-6, IL-10, IL-17 and Interferon-γ (IFN-γ) over time (P < 0.05), and changed the mRNA levels of IL-2, IL-4, IL-6. IL-10, IL-17, IFN-γ, CD4, D8, CD19 GnRH, and GnRH receptor (GnRH-R) in thymus and spleen. Thus, GnRH immunization enhanced the immune markers in thymus, spleen, and blood immune cytokines in rats.


Assuntos
Hormônio Liberador de Gonadotropina , Interleucina-10 , Ratos , Masculino , Animais , Interleucina-17 , Interleucina-4 , Interleucina-6 , Imunização Secundária , Imunidade
10.
Theriogenology ; 176: 137-148, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34607132

RESUMO

In the present study, we evaluated how Ptprn-2 (encoding tyrosine phosphatase, receptor type, N2 polypeptide protein) affects the onset of puberty in female rats. We evaluated the expression of Ptprn-2 mRNA and protein in the hypothalamus-pituitary-ovary axis of female rats using real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR) and immunofluorescence at infancy, prepuberty, puberty, peripuberty, and adulthood. We evaluated the effects of Ptprn-2 gene knockdown on different aspects of reproduction-related biology in female rats, including the expression levels of puberty-related genes in vivo and in vitro, the time to onset of puberty, the concentration of serum reproductive hormones, the morphology of ovaries, and the ultrastructure of pituitary gonadotropin cells. Our results demonstrated that PTPRN-2 was primarily distributed in the arcuate nucleus (ARC), periventricular nucleus (PeN), adenohypophysis, and the ovarian follicular theca, stroma, and granulosa cells of female rats at various stages. Ptprn-2 mRNA levels significantly varied between peripuberty and puberty (P < 0.05) in the hypothalamus and pituitary gland. In hypothalamic cells, Ptprn-2 knockdown decreased the expression of Ptprn-2 and Rfrp-3 mRNA (P < 0.05) and increased the levels of Gnrh and Kiss-1 mRNA (P < 0.05). Ptprn-2 knockdown in the hypothalamus resulted in delayed vaginal opening compared to the control group (n = 12, P < 0.01), and Ptprn-2, Gnrh, and Kiss-1 mRNA levels (P < 0.05) all decreased, while the expression of Igf-1 (P < 0.05) and Rfrp-3 mRNA (P < 0.01) increased. The concentrations of FSH and P4 in the serum of Ptprn-2 knockdown rats were lower than in control animals (P < 0.05). Large transverse perimeters and longitudinal perimeters (P < 0.05) were found in the ovaries of Ptprn-2 knockdown rats. There were fewer large secretory particles from gonadotropin cells in adenohypophysis tissue of the Ptprn-2 knockdown group compared to the control group. This indicates that Ptprn-2 knockdown can regulate levels of Gnrh, Kiss-1, and Rfrp-3 mRNA in the hypothalamus, regulate the concentration of serum FSH and P4, and alter the morphology of ovarian and gonadotropin cells, delaying the onset of puberty in female rats.


Assuntos
Hormônio Liberador de Gonadotropina , Maturidade Sexual , Animais , Feminino , Hormônio Liberador de Gonadotropina/genética , Hormônio Liberador de Gonadotropina/metabolismo , Hipotálamo/metabolismo , Kisspeptinas/genética , Hipófise/metabolismo , Ratos , Ratos Sprague-Dawley , Proteínas Tirosina Fosfatases Classe 8 Semelhantes a Receptores
11.
Theriogenology ; 165: 92-98, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33647740

RESUMO

MicroRNAs (miRNAs) are key epigenomic regulators of proliferation, differentiation, and secretion in cells involved in follicular development. We here studied the functional role of one such molecule, miR-130a-3p, in goat ovarian granulosa cells (GCs). High expression of this miRNA was evident in goat GCs by fluorescence in situ hybridization and suppressed estradiol and progesterone secretion from these cells, as determined by ELISA. miR-130a-3p was predicted to have a binding site for the 3' UTR of the prostate transmembrane protein androgen induced 1 gene (PMEPA1), and this was verified by a dual-luciferase reporter assay. PMEPA1 mRNA and protein expression were both found to be regulated by miR-130a-3p in GCs. Moreover, the overexpression or knockdown of PMEPA1 enhanced or suppressed estradiol and progesterone secretion from these cells, respectively. Furthermore, the secretion of estradiol and progesterone did not change significantly after the offsetting of PMEPA1 overexpression in GCs by miR-130a-3p. In summary, our present data indicate that miR-130a-3p inhibits the secretion of estradiol and progesterone in GCs by targeting PMEPA1. Our study thus provides seminal data and important new insights into the regulation of reproductive mechanisms in the nanny goat and other female mammals.


Assuntos
Cabras , MicroRNAs , Animais , Estradiol , Feminino , Cabras/genética , Hormônios Esteroides Gonadais , Células da Granulosa , Hibridização in Situ Fluorescente/veterinária , Masculino , MicroRNAs/genética
12.
Animals (Basel) ; 10(4)2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32230949

RESUMO

This study explored the role of γ-aminobutyric acid transaminase (GABA-T) in the puberty and reproductive performance of female rats. Immunofluorescence technique, quantitative real-time PCR (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA) were used to detect the distribution of GABA-T and the expression of genes and hormones in female rats, respectively. The results showed that GABA-T was mainly distributed in the arcuate nucleus (ARC), paraventricular nucleus (PVN) and periventricular nucleus (PeN) of the hypothalamus, and in the adenohypophysis, ovarian granulosa cells and oocytes. Abat mRNA level at 28 d was lowest in the hypothalamus and the pituitary; at puberty, it was lowest in the ovary. Abat mRNA level was highest in adults in the hypothalamus; at infancy and puberty, it was highest in the pituitary; and at 21 d it was highest in the ovary. After vigabatrin (GABA-T irreversible inhibitor) was added to hypothalamus cells, the levels of Abat mRNA and Rfrp-3 mRNA were significantly reduced, but Gnrh mRNA increased at the dose of 25 and 50 µg/mL; Kiss1 mRNA was significantly increased but Gabbr1 mRNA was reduced at the 50 µg/mL dose. In prepubertal rats injected with vigabatrin, puberty onset was delayed. Abat mRNA, Kiss1 mRNA and Gnrh mRNA levels were significantly reduced, but Rfrp-3 mRNA level increased in the hypothalamus. Vigabatrin reduced the concentrations of GABA-T, luteinizing hormone (LH) and progesterone (P4), and the ovarian index. Lactation performance was reduced in adult rats with vigabatrin treatment. Four hours after vigabatrin injection, the concentrations of GABA-T and LH were significantly reduced in adult and 25 d rats, but follicle-stimulating hormone (FSH) increased in 25 d rats. In conclusion, GABA-T affects the reproductive function of female rats by regulating the levels of Gnrh, Kiss1 and Rfrp-3 in the hypothalamus as well as the concentrations of LH and P4.

13.
J Therm Biol ; 85: 102420, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31657761

RESUMO

The purpose of the current study was to investigate that effect of duration of thermal stress on growth performance, oxidative stress indices in serum, the expression and localization of ABCG2, and mitochondria ROS production in skeletal muscle, small intestine and immune organs, and then to further reveal correlations between indicators. At 28 days of age, sixty broilers were randomly divided into the control group (25 ±â€¯2 °C; 24 h/day) and the heat stress group (36 ±â€¯2 °C; 8 h/day lasted for 1 week or 2 weeks). Fifteen broilers per group were respectively euthanized, and some samples were respectively collected from the control and the heat stress groups at the end of the 1st week or the 2nd week of heat stress. A typical heat stress response has been observed at this temperature. Compared with the control group, the birds subjected to heat stress at the end of the 1st week reduced (P < 0.05) body weight (BW), average daily feed intake (ADFI), average daily gain (ADG), the activity of serum antioxidant enzyme and content of glutathione (GSH), while increased (P < 0.05) feed conversion ratio (FCR), serum corticosterone and malondialdehyde (MDA) levels. However, when the heat stress lasted for the end of the 2nd week, there was no significant difference (P > 0.05) in ADFI, ADG, FCR and serum contents of corticosterone, MDA and GSH. Regardless of duration of thermal stress, the localization of ABCG2 protein had no change. Moreover, heat stress also did not affect (P > 0.05) the IOD of the ABCG2 positive portion and the expression of the ABCG2 mRNA in the pectorales, crureus, duodenum, jejunum, ileum and spleen, while significantly increased (P < 0.05) the corresponding tissues ROS production at the end of the 1st week of heat stress. In contrast, at the end of the 2nd week of heat stress, IOD of the ABCG2 positive portion and the expression of the ABCG2 mRNA in heat stress group significantly increased (P < 0.05), while the corresponding tissues ROS production had no difference (P > 0.05) compared to the control group. Collectively, duration of thermal stress affects growth performance, serum oxidative stress indices, and the expression of ABCG2 and the ROS production of broiler tissues in a time-dependent manner. There is a negative correlation between the expression of ABCG2 and the ROS production in the corresponding tissues under heat stress.


Assuntos
Galinhas/fisiologia , Transtornos de Estresse por Calor/metabolismo , Transtornos de Estresse por Calor/veterinária , Doenças das Aves Domésticas/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Catalase/sangue , Galinhas/sangue , Corticosterona/sangue , Glutationa/sangue , Glutationa Peroxidase/sangue , Glutationa Redutase/sangue , Intestino Delgado/metabolismo , Malondialdeído/sangue , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Baço/metabolismo , Superóxido Dismutase/sangue , Timo/metabolismo
14.
Theriogenology ; 111: 1-8, 2018 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-29407422

RESUMO

To investigate the effect of gonadotropin-releasing hormone 2-multiple antigen peptide (GnRH2-MAP) on reproductive function. In our study, 20-day-old male rats (n = 90) were randomly allocated to one of three treatment groups: GnRH2-MAP immunization, GnRH2 immunization, and non-immunized control groups. The immunized animals were administered three doses of GnRH2-MAP or GnRH2 vaccines from 0 to 6 weeks at 2-week intervals. The control group only received oil adjuvant. Blood and right testis samples were collected, and the left testis was weighed and its volume was measured at 0, 2, 4, 6, 8, 10 and 12 weeks after the first immunization. The serum antibody titer and testosterone concentration were determined by ELISA, and the right testis samples were collected for histological analysis. The results revealed that the serum of vaccinated rats elicited a significantly higher antibody titer and a lower T concentration compared with the control group two weeks after the first immunization (P < 0.05), but the highest antibody titer and lowest T concentration were found in animals treated with GnRH2-MAP (P < 0.05). The second immunization resulted in a significant decrease in testicular weight and volume (P < 0.05) in both immunized groups compared to the control, but these values were significantly lower in the GnRH2-MAP group than in the GnRH2 group. Furthermore, seminiferous tubules revealed more significant atrophy in the GnRH2-MAP group than in the GnRH2 group, and no sperm were observed in rats of the GnRH2-MAP group. Thus, GnRH2-MAP may be an effective antigen and a potential immunocastration vaccine with higher effectiveness.


Assuntos
Hormônio Liberador de Gonadotropina/imunologia , Vacinas Anticoncepcionais/imunologia , Animais , Masculino , Tamanho do Órgão , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Testículo/anatomia & histologia , Vacinação
15.
Reprod Biol Endocrinol ; 15(1): 81, 2017 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-28985764

RESUMO

BACKGROUND: There are many variables affecting the onset of puberty in animals, including genetic, nutritional, and environmental factors. Recent studies suggest that epigenetic regulation, especially DNA methylation, plays a majorrole in the regulation of puberty. However, there have been no reports on DNA methylation of the pubertal genome. METHODS: We investigated DNA methylation in the female rat hypothalamus at prepuberty and puberty using reduced representation bisulfite sequencing technology. The identified genes and signaling pathways exhibiting changes to DNA methylation in pubertal rats were determined by Gene Ontogeny and Kyoto Encyclopedia of Genes and Genomes analysis. RESULTS: The distribution of the three types of methylated C bases in promoter and CpG island (CGI) regions in the hypothalamus was as follows: 87.79% CG, 3.05% CHG, 9.16% CHH for promoters, and 88.35% CG, 3.21% CHG, 88.35% CHH for CGI in prepubertal rats; and 90.78% CG, 2.13% CHG, 7.09% CHH for promoters, and 88.59% CG, 88.59% CHG, 8.35% CHH for CGI in pubertal animals. CG showed the highest percentage of methylation, and was the highest methylation state in CGI. Compared to prepubertal hyoyhalamus samples, we identified ten genes with altered methylation in promoter regions in the pubertal hypothalamus samples, and 43 genes with altered methylation in the CGI. Changes in DNA methylation were found in gonadotropin-releasing hormone signaling pathways, and the oocyte meiosis pathway. CONCLUSION: Our results demonstrate changes in DNA methylation occur in female rats from prepuberty to puberty suggestng DNA methylation may play a crucial role in the regulation of puberty onset. This study provides essential information for future studies on the role of epigenetics in the regulation of puberty.


Assuntos
Metilação de DNA , Epigênese Genética , Hipotálamo/metabolismo , Regiões Promotoras Genéticas , Maturidade Sexual/genética , Animais , Ilhas de CpG , Feminino , Hormônio Liberador de Gonadotropina/genética , Ratos , Análise de Sequência de DNA/métodos , Sulfitos/química
16.
Pol J Vet Sci ; 20(4): 661-667, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29611645

RESUMO

Follicle-stimulating hormone (FSH) regulates oogenesis and spermatogenesis by binding to its receptor (FSHR) on target cells in the ovary and testis, respectively. The signaling cascades activated after ligand binding are extremely complex and have been shown to include protein kinase A and phosphatidylinositol 3-kinase/protein kinase. The adapter protein APPL1 (adapter protein with PH domain, PTB domain, and leucine zipper), which is an assortment of other signaling proteins, was previously identified to interact with the FSH receptor (FSHR) and the protein kinase B (AKT) pathway. APPL1 plays an important role in promoting cell survival within the preovulatory follicle granulosa layer. Here, we aimed to evaluate the FSHR, AKT2, and APPL1 gene and protein expression levels in the ovaries of different prolific porcine breeds (Wannan Black [WB] and Large White [LW] pigs) using immunohistochemistry and qRT-PCR, respectively. Our results showed that FSHR, AKT2, and APPL1 mRNA levels were significantly higher (P < 0.05) in the ovaries of WB pigs than in the ovaries of LW pigs. Additionally, the FSHR, AKT2, and APPL1 proteins were mainly found distributed in the granulosa cells and oocytes. This study showed that high levels of FSHR, AKT2, and APPL1 were expressed in the ovaries of high prolific breed pigs.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Ovário/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores do FSH/metabolismo , Suínos , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Feminino , Imuno-Histoquímica , Proteínas Proto-Oncogênicas c-akt/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores do FSH/genética , Distribuição Tecidual
17.
Sci Rep ; 6: 32877, 2016 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-27599613

RESUMO

Nesfatin-1 is an important molecule in the regulation of reproduction. However, its role in the reproductive axis in male animals remains to be understood. Here, we found that nesfatin-1 was mainly distributed in the arcuate nucleus (ARC), paraventricular nucleus (PVN), periventricular nucleus (PeN), and lateral hypothalamic area (LHA) of the hypothalamus; adenohypophysis and Leydig cells in male rats. Moreover, the concentrations of serum nesfatin-1 and its mRNA in hypothalamo-pituitary-gonadal axis (HPGA) vary with the age of the male rat. After intracerebroventricular injection of nesfatin-1, the hypothalamic genes for gonadotrophin releasing hormone (GnRH), kisspeptin (Kiss-1), pituitary genes for follicle-stimulate hormone ß(FSHß), luteinizing hormone ß(LHß), and genes for testicular steroidogenic acute regulatory (StAR) expression levels were decreased significantly. Nesfatin-1 significantly increased the expression of genes for 3ß-hydroxysteroid dehydrogenase (3ß-HSD), 17ß-hydroxysteroid dehydrogenase (17ß-HSD), and cytochrome P450 cleavage (P450scc) in the testis of pubertal rats, but their levels decreased in adult rats (P < 0.05), along with the serum FSH, LH, and testosterone (T) concentrations. After nesfatin-1 addition in vitro, T concentrations of the supernatant were significantly higher than that in the control group. These results were suggestive of the role of nesfatin-1 in the regulation of the reproductive axis in male rats.


Assuntos
Proteínas de Ligação ao Cálcio/fisiologia , Proteínas de Ligação a DNA/fisiologia , Hipotálamo/metabolismo , Células Intersticiais do Testículo/metabolismo , Proteínas do Tecido Nervoso/fisiologia , Adeno-Hipófise/metabolismo , 17-Hidroxiesteroide Desidrogenases/metabolismo , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Hormônio Foliculoestimulante/metabolismo , Subunidade beta do Hormônio Folículoestimulante/metabolismo , Hipotálamo Posterior/metabolismo , Hormônio Luteinizante/metabolismo , Masculino , Nucleobindinas , Núcleo Hipotalâmico Paraventricular/metabolismo , Hipófise/metabolismo , Ratos , Testículo/metabolismo , Testosterona/metabolismo
18.
Theriogenology ; 84(9): 1556-64, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26365586

RESUMO

The aim of this study was to assess whether changes in kisspeptin and GnRH levels could be attributed to sex steroids at puberty onset. We used the ovariectomy (OVX) model in rats treated with 17ß-estradiol (E2; OVX + E2), or oil (OVX + oil), and in intact rats treated with E2 (intact + E2) or oil only (intact + oil) to determine gene expression changes of Kiss1 and Gnrh1 in the hypothalamus and protein expression of kisspeptin and GnRH in the different areas of the hypothalamus. In the intact + E2 and OVX + E2 rats on the day of the onset of puberty, GnRH-immunoreactive (ir) cell numbers decreased (P < 0.05) in the arcuate nucleus but were increased in the preoptic area; Kisspeptin-ir cells increased (P < 0.05) in the arcuate nucleus, periventricular nucleus, and preoptic area; no difference (P > 0.05) was found in the paraventricularis nucleus for GnRH-ir or kisspeptin-ir cells. Additionally, levels of Kiss1 and Gnrh1 messenger RNA in the hypothalamus were significantly higher (P < 0.05) in the OVX + E2 or intact + E2 rats than in the OVX + oil or intact + oil animals, respectively. In the OVX + oil rats, OVX significantly increased (P < 0.05) levels of Gnrh1 and Kiss1 messenger RNA and the expression of GnRH and kisspeptin in the hypothalamus compared to intact + oil animals. These results suggest that kisspeptin and GnRH play major roles in modulating the activity of estrogen circuits at the onset of puberty.


Assuntos
Estradiol/farmacologia , Estrogênios/farmacologia , Hormônio Liberador de Gonadotropina/metabolismo , Hipotálamo/metabolismo , Kisspeptinas/metabolismo , Maturidade Sexual/fisiologia , Animais , Estradiol/administração & dosagem , Estradiol/sangue , Feminino , Regulação da Expressão Gênica/fisiologia , Hormônio Liberador de Gonadotropina/genética , Kisspeptinas/genética , Masculino , Ovariectomia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Reação em Cadeia da Polimerase em Tempo Real
19.
Anim Sci J ; 86(8): 747-54, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25597778

RESUMO

This study was designed to explore the effect of active immunization against maltose binding protein-gonadotropin releasing hormone I hexamer (MBP-GnRH-I6) on the reproductive function in cats. Each immunized cat was administered twice intramuscularly in the neck at 16 and 20 weeks old. The concentrations of the testosterone and estradiol and the level of anti-GnRH-I antibody in the serum were measured by radioimmunoassay and ELISA, respectively. The results showed that the weight and size of testicles and ovaries, and the concentrations of serum testosterone and estradiol in the immunized animals were lower than those of the control cats (P < 0.05), but that the levels of anti-GnRH-I antibody were significant higher compared to control animals (P < 0.05). Testicular tissues from the immunized male cats showed that seminiferous tubules were depauperate with the lumen relatively empty and that the differentiation of spermatogonia was not obvious. Tissues from the immunized female cats showed that the ovaries had many primordial follicles and primary follicles, but no secondary follicle was observed. These results showed active immunization against MBP-GnRH-I6 could make the gonads atrophy and reduce the concentrations of gonadal hormones, which suggested that MBP-GnRH-I6 was a very effective immunogen in the cat.


Assuntos
Gatos/fisiologia , Hormônio Liberador de Gonadotropina/imunologia , Proteínas Recombinantes de Fusão/imunologia , Reprodução , Vacinação , Animais , Anticorpos/sangue , Atrofia , Castração/métodos , Ensaio de Imunoadsorção Enzimática , Estradiol/sangue , Feminino , Hormônios Gonadais/metabolismo , Masculino , Tamanho do Órgão , Ovário/metabolismo , Ovário/patologia , Radioimunoensaio , Testículo/metabolismo , Testículo/patologia , Testosterona/sangue
20.
Zygote ; 23(1): 125-35, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23991935

RESUMO

The aim of this study was to evaluate and to compare testicular tissue in immunized and control boars. Eighteen male piglets, aged 12 weeks, were vaccinated twice intramuscularly with a maltose-binding protein-gonadotropin-releasing hormone I hexamer peptide (MBP-GnRH-I6). Blood samples were taken at 12, 18, 21 and 24 weeks of age. Serum concentrations of testosterone and GnRH-I antibodies were determined by radioimmunoassay. The pigs were sacrificed 6 weeks after the second immunization. Testicular weight and size were recorded and tissue samples were collected for histological examination. The results demonstrated that active immunization against MBP-GnRH-I6 increased serum GnRH-I antibody levels (P < 0.05) and reduced serum concentrations of testosterone (P < 0.05) when compared with controls. Histological studies performed on testicular tissue revealed clear signs of atrophy in the MBP-GnRH-I6 immunized pigs, and a significant reduction (P < 0.05) in paired testes weight and size were seen in the treated boars. Microscopically, the mean diameter of the seminiferous tubules was markedly reduced (P < 0.01). Spermatogonia were visible, as well as few spermatocytes, but no spermatozoa were detected in the seminiferous tubules. Ultramicroscopic analysis of testicular tissue revealed an increase in the thickness of the basement membrane and extensive damage in the cell organelles of the treated animals, including small spermatogonial size, decreased number of mitochondria and endoplasmic reticulum in the primary spermatocyte and spermatid, a shallow hollow for nuclear membranes in Sertoli cells and mitochondrial vacuolation in Leydig cells. We conclude that MBP-GnRH-I6 induces severe atrophy in the testes of immunized boars.


Assuntos
Hormônio Liberador de Gonadotropina/imunologia , Proteínas Recombinantes de Fusão/imunologia , Testículo/fisiologia , Animais , Anticorpos/sangue , Atrofia/imunologia , Hormônio Liberador de Gonadotropina/genética , Imunização , Masculino , Proteínas Ligantes de Maltose/genética , Proteínas Ligantes de Maltose/imunologia , Microscopia Eletrônica , Tamanho do Órgão , Radioimunoensaio , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/farmacologia , Espermátides/citologia , Espermátides/ultraestrutura , Espermatócitos/citologia , Espermatogônias/citologia , Sus scrofa , Testículo/efeitos dos fármacos , Testículo/ultraestrutura , Testosterona/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA