Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Vis Exp ; (210)2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39221955

RESUMO

Human tumor samples hold a plethora of information about their microenvironment and immune repertoire. Effective dissociation of human tissue samples into viable cell suspensions is a required input for the single-cell RNA sequencing (scRNAseq) pipeline. Unlike bulk RNA sequencing approaches, scRNAseq enables us to infer the transcriptional heterogeneity in tumor specimens at the single-cell level. Incorporating this approach in recent years has led to many discoveries, such as identifying immune and tumor cellular states and programs associated with clinical responses to immunotherapies and other types of treatments. Moreover, single-cell technologies applied to dissociated tissues can be used to identify accessible chromatin regions T and B cell receptor repertoire, and the expression of proteins, using DNA barcoded antibodies (CITEseq). The viability and quality of the dissociated sample are critical variables when using these technologies, as these can dramatically affect the cross-contamination of single cells with ambient RNA, the quality of the data, and interpretation. Moreover, long dissociation protocols can lead to the elimination of sensitive cell populations and the upregulation of a stress response gene signature. To overcome these limitations, we devised a rapid universal dissociation protocol, which has been validated on multiple types of human and murine tumors. The process begins with mechanical and enzymatic dissociation, followed by filtration, red blood lysis, and live dead enrichment, suitable for samples with a low input of cells (e.g., needle core biopsies). This protocol ensures a clean and viable single-cell suspension paramount to the successful generation of Gel Bead-In Emulsions (GEMs), barcoding, and sequencing.


Assuntos
Análise de Sequência de RNA , Análise de Célula Única , Humanos , Análise de Célula Única/métodos , Camundongos , Animais , Análise de Sequência de RNA/métodos , Neoplasias/genética
2.
Nat Commun ; 15(1): 7357, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39191779

RESUMO

Image-guided percutaneous cryoablation is an established minimally invasive oncologic treatment. We hypothesized that cryoablation may modify the immune microenvironment through direct modulation of the tumor, thereby generating an anti-tumor response in tumors refractory to immune checkpoint inhibition (ICI). In this non-randomized phase II single-center study (NCT03290677), subjects with unresectable melanoma progressing on ICI underwent cryoablation of an enlarging metastasis, and ICI was continued for a minimum of two additional cycles. The primary endpoints were safety, feasibility and tumor response in non-ablated lesions. From May 2018 through July 2020, 17 patients were treated on study. The study met its primary endpoints with the combination strategy found to be safe and feasible with an objective response rate of 23.5% and disease control rate of 41% (4 partial response, 3 stable disease). Our data support further study of this synergistic therapeutic approach.


Assuntos
Criocirurgia , Inibidores de Checkpoint Imunológico , Melanoma , Humanos , Melanoma/tratamento farmacológico , Melanoma/patologia , Melanoma/cirurgia , Melanoma/imunologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Criocirurgia/métodos , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Progressão da Doença , Adulto , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/cirurgia , Microambiente Tumoral/imunologia , Metástase Neoplásica , Resultado do Tratamento , Terapia Combinada , Idoso de 80 Anos ou mais
3.
Cell ; 187(10): 2536-2556.e30, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38653237

RESUMO

Cysteine-focused chemical proteomic platforms have accelerated the clinical development of covalent inhibitors for a wide range of targets in cancer. However, how different oncogenic contexts influence cysteine targeting remains unknown. To address this question, we have developed "DrugMap," an atlas of cysteine ligandability compiled across 416 cancer cell lines. We unexpectedly find that cysteine ligandability varies across cancer cell lines, and we attribute this to differences in cellular redox states, protein conformational changes, and genetic mutations. Leveraging these findings, we identify actionable cysteines in NF-κB1 and SOX10 and develop corresponding covalent ligands that block the activity of these transcription factors. We demonstrate that the NF-κB1 probe blocks DNA binding, whereas the SOX10 ligand increases SOX10-SOX10 interactions and disrupts melanoma transcriptional signaling. Our findings reveal heterogeneity in cysteine ligandability across cancers, pinpoint cell-intrinsic features driving cysteine targeting, and illustrate the use of covalent probes to disrupt oncogenic transcription-factor activity.


Assuntos
Cisteína , Neoplasias , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Cisteína/metabolismo , Cisteína/química , Ligantes , Melanoma/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , NF-kappa B/química , NF-kappa B/metabolismo , Oxirredução , Transdução de Sinais , Fatores de Transcrição SOXE/química , Fatores de Transcrição SOXE/metabolismo
4.
bioRxiv ; 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38405985

RESUMO

A central problem in cancer immunotherapy with immune checkpoint blockade (ICB) is the development of resistance, which affects 50% of patients with metastatic melanoma1,2. T cell exhaustion, resulting from chronic antigen exposure in the tumour microenvironment, is a major driver of ICB resistance3. Here, we show that CD38, an ecto-enzyme involved in nicotinamide adenine dinucleotide (NAD+) catabolism, is highly expressed in exhausted CD8+ T cells in melanoma and is associated with ICB resistance. Tumour-derived CD38hiCD8+ T cells are dysfunctional, characterised by impaired proliferative capacity, effector function, and dysregulated mitochondrial bioenergetics. Genetic and pharmacological blockade of CD38 in murine and patient-derived organotypic tumour models (MDOTS/PDOTS) enhanced tumour immunity and overcame ICB resistance. Mechanistically, disrupting CD38 activity in T cells restored cellular NAD+ pools, improved mitochondrial function, increased proliferation, augmented effector function, and restored ICB sensitivity. Taken together, these data demonstrate a role for the CD38-NAD+ axis in promoting T cell exhaustion and ICB resistance, and establish the efficacy of CD38 directed therapeutic strategies to overcome ICB resistance using clinically relevant, patient-derived 3D tumour models.

5.
bioRxiv ; 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37961514

RESUMO

Cysteine-focused chemical proteomic platforms have accelerated the clinical development of covalent inhibitors of a wide-range of targets in cancer. However, how different oncogenic contexts influence cysteine targeting remains unknown. To address this question, we have developed DrugMap , an atlas of cysteine ligandability compiled across 416 cancer cell lines. We unexpectedly find that cysteine ligandability varies across cancer cell lines, and we attribute this to differences in cellular redox states, protein conformational changes, and genetic mutations. Leveraging these findings, we identify actionable cysteines in NFκB1 and SOX10 and develop corresponding covalent ligands that block the activity of these transcription factors. We demonstrate that the NFκB1 probe blocks DNA binding, whereas the SOX10 ligand increases SOX10-SOX10 interactions and disrupts melanoma transcriptional signaling. Our findings reveal heterogeneity in cysteine ligandability across cancers, pinpoint cell-intrinsic features driving cysteine targeting, and illustrate the use of covalent probes to disrupt oncogenic transcription factor activity.

6.
Cancer Cell ; 41(7): 1363-1380.e7, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37327788

RESUMO

Inactivating STK11/LKB1 mutations are genomic drivers of primary resistance to immunotherapy in KRAS-mutated lung adenocarcinoma (LUAD), although the underlying mechanisms remain unelucidated. We find that LKB1 loss results in enhanced lactate production and secretion via the MCT4 transporter. Single-cell RNA profiling of murine models indicates that LKB1-deficient tumors have increased M2 macrophage polarization and hypofunctional T cells, effects that could be recapitulated by the addition of exogenous lactate and abrogated by MCT4 knockdown or therapeutic blockade of the lactate receptor GPR81 expressed on immune cells. Furthermore, MCT4 knockout reverses the resistance to PD-1 blockade induced by LKB1 loss in syngeneic murine models. Finally, tumors from STK11/LKB1 mutant LUAD patients demonstrate a similar phenotype of enhanced M2-macrophages polarization and hypofunctional T cells. These data provide evidence that lactate suppresses antitumor immunity and therapeutic targeting of this pathway is a promising strategy to reversing immunotherapy resistance in STK11/LKB1 mutant LUAD.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Animais , Camundongos , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/terapia , Adenocarcinoma de Pulmão/metabolismo , Lactatos/metabolismo , Lactatos/farmacologia , Lactatos/uso terapêutico , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/tratamento farmacológico , Macrófagos , Mutação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA