Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
1.
Phytother Res ; 38(4): 1951-1970, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38358770

RESUMO

The herb Sophora flavescens displays anti-inflammatory activity and can provide a source of antipsoriatic medications. We aimed to evaluate whether S. flavescens extracts and compounds can relieve psoriasiform inflammation. The ability of flavonoids (maackiain, sophoraflavanone G, leachianone A) and alkaloids (matrine, oxymatrine) isolated from S. flavescens to inhibit production of cytokine/chemokines was examined in keratinocytes and macrophages. Physicochemical properties and skin absorption were determined by in silico molecular modeling and the in vitro permeation test (IVPT) to establish the structure-permeation relationship (SPR). The ethyl acetate extract exhibited higher inhibition of interleukin (IL)-6, IL-8, and CXCL1 production in tumor necrosis factor-α-stimulated keratinocytes compared to the ethanol and water extracts. The flavonoids demonstrated higher cytokine/chemokine inhibition than alkaloids, with the prenylated flavanones (sophoraflavanone G, leachianone A) led to the highest suppression. Flavonoids exerted anti-inflammatory effects via the extracellular signal-regulated kinase, p38, activator protein-1, and nuclear factor-κB signaling pathways. In the IVPT, prenylation of the flavanone skeleton significantly promoted skin absorption from 0.01 to 0.22 nmol/mg (sophoraflavanone G vs. eriodictyol). Further methoxylation of a prenylated flavanone (leachianone A) elevated skin absorption to 2.65 nmol/mg. Topical leachianone A reduced the epidermal thickness in IMQ-treated mice by 47%, and inhibited cutaneous scaling and cytokine/chemokine overexpression at comparable levels to a commercial betamethasone product. Thus, prenylation and methoxylation of S. flavescens flavanones may enable the design of novel antipsoriatic agents.


Assuntos
Alcaloides , Flavanonas , Sophora , Camundongos , Animais , Flavonoides/química , Sophora flavescens , Sophora/química , Flavanonas/farmacologia , Flavanonas/química , Prenilação , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Citocinas , Quimiocinas
2.
Int J Nanomedicine ; 18: 2647-2658, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37220630

RESUMO

Purpose: Morbid obesity and its related metabolic syndrome are an important health issue. Recently, sleeve gastrectomy (SG) and Roux-en-Y gastric bypass (RYGB) have accounted for the most popular bariatric surgeries. Valsartan (VST) is a common hypertension drug, and nano-carriers can increase its solubility and bioavailability. This study aims to explore the nano-VST formula in bariatric surgery subjects. Methods: High-fat fed animals were used as obese models. Operations were performed according to a standardized protocol. The drug was administrated by gavage, and blood samples were taken by serial tail vein sampling. Caco-2 cells were used for examining cell viability and drug uptake. A self-nano-emusifying drug delivery system (SNEDDS) formula was composed of sefsol-218, RH-40 and propylene glycol by a specified ratio, while high-performance liquid chromatography (HPLC) was used for determining drug concentrations. Results: Post-operatively, subjects that underwent RYGB lost more body weight compared to the SG group. The SNEDDS did not exhibit cytotoxicity after adequate dilution, and the cytotoxicity was not related to VST dose. A better cellular uptake of SNEDDS was observed in vitro. The SNEDDS formula achieved a diameter of 84 nm in distilled water and 140 nm in simulated gastric fluid. In obese animals, the maximum serum concentration (Cmax) of VST was increased 1.68-folds by SNEDDS. In RYGB with SUS, the Cmax was reduced to less than 50% of the obese group. SNEDDS increased the Cmax to 3.5 folds higher than SUS and resulted in 3.28-folds higher AUC0-24 in the RYGB group. Fluorescence imaging also confirmed a stronger signal of SNEDDS in the gastrointestinal mucosa. SNEDDS accumulated a higher drug concentration than suspension alone in the liver of the obese group. Conclusion: SNEDDS could reverse the VST malabsorption in RYGB. Further studies are mandatory to clarify post-SG change of drug absorption.


Assuntos
Cirurgia Bariátrica , Animais , Humanos , Preparações Farmacêuticas , Valsartana , Células CACO-2 , Sistemas de Liberação de Medicamentos , Obesidade
3.
Eur J Pharm Sci ; 186: 106458, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37137418

RESUMO

The present study screened the utility of topically-applied nanoformulations to target the drugs/actives into the skin reservoir with the reduction of possible systemic absorption. The lipid-based nanoformulations selected in this study included solid lipid nanoparticles (SLNs), nanostructured lipid carriers (NLCs), nanoemulsions (NEs), liposomes, and niosomes. We loaded flavanone and retinoic acid (RA) as the penetrants. The prepared nanoformulations were assessed for their average diameter, polydispersity index (PDI), and zeta potential. An in vitro permeation test (IVPT) was utilized to determine the skin delivery into/across pig skin, atopic dermatitis (AD)-like mouse skin, and photoaged mouse skin. We found an increased skin absorption of lipid nanoparticles following the increase of solid lipid percentage in the formulations (SLNs > NLCs > NEs). The use of liposomes even reduced the dermal/transdermal selectivity (S value) to lessen the cutaneous targeting. The niosomes resulted in significantly greater RA deposition and reduced permeation in the Franz cell receptor compared to the other nanoformulations. The S value of the RA delivery via stripped skin was increased by 26-fold in the niosomes compared to the free RA. The dye-labeled niosomes displayed a strong fluorescence in the epidermis and upper dermis through the visualization of fluorescence and confocal microscopies. The cyanoacrylate skin biopsy manifested greater hair follicle uptake of the niosomes compared to the free penetrants by 1.5 to three-fold. The 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assay indicated an increase in antioxidant ability from 55% to 75% after flavanone entrapment in the niosomes. In the activated keratinocytes, the niosomal flavanone could suppress the overexpressed CCL5 to the baseline control because of the facile cell internalization. After the formulation optimization, the niosomes with higher phospholipid amount had a superior effect in delivering penetrants into the skin reservoir, with limited permeation to the receptors.


Assuntos
Lipossomos , Absorção Cutânea , Camundongos , Animais , Suínos , Lipossomos/metabolismo , Pele/metabolismo , Administração Cutânea , Tretinoína , Lipídeos , Portadores de Fármacos/metabolismo
4.
Biomed Pharmacother ; 155: 113798, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36271574

RESUMO

Psoriasis is a chronic and recurrent skin problem that affects 3% of the global population. Nowadays, most medicines may not promise a complete cure for patients with psoriasis because of the development of pharmacoresistance and the side effects of drugs due to the microenvironment impact in the context of skin imbalance. Herein, we attempt to explore the pharmaceutical efficacy of Scutellaria baicalensis (S. baicalensis) in modulating the microenvironment created by macrophages and keratinocytes in psoriasis. The results indicated that treatment of S. baicalensis extract significantly reduced the thickness of epidermis and attenuated psoriatic lesions. Moreover, S. baicalensis extract obviously inhibited the activation and infiltration of macrophages by alleviating inflammatory factors such as nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and cyclooxygenase-2 (COX-2). The administration of S. baicalensis extract also remarkably abolished oxidative damage upon DNA and proteins, which attributed to the activation of nuclear factor erythroid 2-related factor-2 (Nrf2) and heme oxygenase-1 (HO-1). The network analysis of redox proteomics and cytokine profiles suggested that S. baicalensis administration regulated the specific pathways associated with oxidative stress, inflammation and cytokine signaling cascades to ameliorate the macrophage-targeted responses and subsequently arrest proliferation of keratinocytes. Collectively, our findings highlighted the importance of S. baicalensis application in reprogramming microenvironment to provide an alternative and complementary intervention for long-term psoriatic therapy.


Assuntos
Psoríase , Scutellaria baicalensis , Humanos , Scutellaria baicalensis/metabolismo , Fator 2 Relacionado a NF-E2 , Heme Oxigenase-1 , Ciclo-Oxigenase 2 , NF-kappa B/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Macrófagos/metabolismo , Queratinócitos/metabolismo , Citocinas , Psoríase/tratamento farmacológico
5.
Biomater Sci ; 10(21): 6172-6189, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36073349

RESUMO

Dual photothermal and photodynamic therapy (PTT and PDT) is an attractive approach that generates a synergistic effect for inhibiting keratinocyte hyperproliferation in the treatment of psoriasis. Here, we developed phototheranostic nanocarriers capable of producing hyperthermia and reactive oxygen species (ROS) in response to near-infrared (NIR) illumination. To this end, IR820 with photothermal and photodynamic features was embedded in nano-sized polydopamine (PDA) acting as a PTT agent. A comprehensive characterization of the PDA/IR820 nanosystem was performed according to its morphology, size, zeta potential, UV absorbance, and heat generation. Its therapeutic efficacy was assessed by a keratinocyte-based study and using an imiquimod (IMQ)-stimulated psoriasiform murine model. PDA/IR820 nanoparticles were facilely internalized into keratinocytes and mainly resided in lysosomes. Upon irradiation with NIR light, ROS were generated inside the keratinocytes to cause a photodynamic effect. The live/dead cell assay and cytotoxicity assay demonstrated that PDA and IR820 acted as effective photoabsorbers to induce keratinocyte death. The highest cytotoxic effect was detected in the group of NIR-irradiated PDA/IR820 nanoparticles, which killed 52% of keratinocytes. The nanosystem acted through the caspase and poly ADP-ribose polymerase (PARP) pathways to induce keratinocyte apoptosis. In vitro and in vivo skin permeation indicated the selective accumulation of the topically applied PDA/IR820 nanoparticles within psoriasiform skin, suggesting their skin-targeting capability. The combination of PDA/IR820 nanoparticles and NIR irradiation increased the skin temperature by 11.7 °C. PTT/PDT eliminated psoriasiform plaques in mice by decreasing hyperplasia, inhibiting cytokine overexpression, and recovering the barrier function. The epidermal thickness of the IMQ-treated skin was reduced from 134 to 34 µm by the nanocarriers plus NIR. The IR820 nanoparticles were largely deposited on the inflamed areas of psoriasiform lesions for monitoring the severity of inflammation. The image-guided phototheranostic nanoparticles showed their potential for applications in psoriasis management via noninvasive topical administration.


Assuntos
Hipertermia Induzida , Nanopartículas , Fotoquimioterapia , Psoríase , Camundongos , Animais , Espécies Reativas de Oxigênio , Imiquimode , Inibidores de Poli(ADP-Ribose) Polimerases , Verde de Indocianina/farmacologia , Camundongos Endogâmicos BALB C , Psoríase/tratamento farmacológico , Caspases , Citocinas , Adenosina Difosfato Ribose
6.
AAPS PharmSciTech ; 23(6): 187, 2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35798907

RESUMO

Tea catechins are a group of flavonoids that show many bioactivities. Catechins have been extensively reported as a potential treatment for skin disorders, including skin cancers, acne, photoaging, cutaneous wounds, scars, alopecia, psoriasis, atopic dermatitis, and microbial infection. In particular, there has been an increasing interest in the discovery of cosmetic applications using catechins as the active ingredient because of their antioxidant and anti-aging activities. However, active molecules with limited lipophilicity have difficulty penetrating the skin barrier, resulting in low bioavailability. Nevertheless, topical application is a convenient method for delivering catechins into the skin. Nanomedicine offers an opportunity to improve the delivery efficiency of tea catechins and related compounds. The advantages of catechin-loaded nanocarriers for topical application include high catechin loading efficiency, sustained or prolonged release, increased catechin stability, improved bioavailability, and enhanced accumulation or targeting to the nidus. Further, various types of nanoparticles, including liposomes, niosomes, micelles, lipid-based nanoparticles, polymeric nanoparticles, liquid crystalline nanoparticles, and nanocrystals, have been employed for topical catechin delivery. These nanoparticles can improve catechin permeation via close skin contact, increased skin hydration, skin structure disorganization, and follicular uptake. In this review, we describe the catechin skin delivery approaches based on nanomedicine for treating skin disorders. We also provide an in-depth description of how nanoparticles effectively improve the skin absorption of tea catechins and related compounds, such as caffeine. Furthermore, we summarize the possible future applications and the limitations of nanocarriers for topical delivery at the end of this review article.


Assuntos
Catequina , Absorção Cutânea , Disponibilidade Biológica , Pele/metabolismo , Chá/química , Chá/metabolismo
7.
J Control Release ; 347: 590-606, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35623494

RESUMO

Psoriasis is an autoimmune skin disorder presenting the excessive expression of interleukin (IL)-6. The topical use of small interfering RNA (siRNA) has been increasingly discovered for treating skin diseases. A delivery system capable of protecting siRNA while facilitating both skin targeting and cellular entrance is critical for the successful medication of topically-applied siRNA. Herein, we developed a delivery system for siRNA based on poly(lactic-co-glycolic acid) (PLGA) nanoparticles and combined this system with an ablative laser to promote skin absorption for topical psoriasis therapy. The siRNA absorption enhancement was compared by two laser modalities: a fractional CO2 laser and a fully-ablative Er:YAG laser. We characterized the effect of the delivery system by the cellular uptake, IL-6 silencing, in vitro skin absorption, cutaneous biodistribution, and in vivo psoriasiform dermatitis in mice. The nanocarriers showed minimal cytotoxicity and facile cellular uptake to knock down the IL-6 expression. The nanoformulation containing a cationic surfactant (Forestall) for ion pairing with siRNA achieved a 66% and 77% IL-6 knockdown efficiency toward keratinocytes and macrophages, respectively. In the Franz cell absorption, the lasers increased the naked siRNA penetration to the receptor compartment by 3.7-5.0-fold but remarkably reduced skin deposition using imiquimod (IMQ)-treated psoriasiform skin as the barrier. The fractional laser facilitated nanoparticle-associated siRNA skin deposition up to 3.3-fold, whereas the transport of the nanocarriers to the receptor was negligible. Qualitatively, the lasers increased nanoparticle delivery in the epidermis with limited effect to elevate the penetration depth. The fractional-mediated nanocarrier delivery dramatically attenuated the erythema and scaly lesions of psoriasiform dermatitis. The histological examination displayed a reduction of epidermal hyperplasia and macrophage infiltration by the combination of laser and nanosystem. The passive and laser-assisted naked siRNA delivery was less effective in mitigating dermatitis. The topical delivery of fractional laser-assisted nanoparticles on mice resulted in a 56% IL-6 knockdown. Our results manifested the benefit of cutaneous siRNA targeting using ablative lasers to deliver nanocarriers for treating psoriatic inflammation.


Assuntos
Dermatite , Lasers de Estado Sólido , Psoríase , Administração Cutânea , Animais , Dermatite/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Interleucina-6/genética , Interleucina-6/metabolismo , Camundongos , Nanopartículas , Psoríase/tratamento farmacológico , RNA Interferente Pequeno , Distribuição Tecidual
8.
Biomed Pharmacother ; 145: 112482, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34915669

RESUMO

The anthraquinones derived from rhubarb are reported to have anti-inflammatory activity. The present study aimed to assess the topical application of rhubarb anthraquinone aglycones for psoriasis treatment. The antipsoriatic effect of five anthraquinones, including aloe-emodin, rhein, emodin, physcion, and chrysophanol, was compared to elucidate a structure-permeation relationship. Molecular modeling was employed to determine the physicochemical properties. Both macrophages (differentiated THP-1) and keratinocytes (HaCaT) were used to examine the anti-inflammatory activity in the cell-based study. The in vitro pig skin absorption showed that chrysophanol was the compound with the highest cutaneous accumulation. Topically applied rhein was detected to be largely delivered to the receptor compartment. The absorption of rhein was increased by 5-fold in the barrier-deficient skin as compared to intact skin. By stimulating macrophages with imiquimod (IMQ) to model the inflammation in psoriasis, it was found that the anthraquinones significantly reduced IL-6, IL-23, and TNF. The cytokine inhibition level was comparable for the five compounds. The anthraquinones suppressed cytokines by inhibiting the activation of MAPK and NF-κB signaling. The anthraquinones also downregulated IL-6, IL-8, and IL-24 in the inflammatory keratinocytes stimulated with TNF. Rhein and chrysophanol were comparable to curtail the STAT3 phosphorylation in keratinocytes induced by the conditioned medium of stimulated macrophages. The IMQ-induced psoriasiform mouse model demonstrated the improvement of scaling, erythema, and epidermal hyperplasia by topically applied rhein or chrysophanol. The epidermal acanthosis evoked by IMQ was reduced with rhein and chrysophanol by 3-fold. The histological profiles exhibit that both anthraquinone compounds diminished the number of macrophages and neutrophils in the lesional skin, skin-draining lymph node, and spleen. Rhein and chrysophanol showed multifunctional inhibition, by regulating several targets for alleviating psoriasiform inflammation.


Assuntos
Antraquinonas/farmacologia , Anti-Inflamatórios/farmacologia , Psoríase/tratamento farmacológico , Rheum/química , Administração Tópica , Animais , Antraquinonas/administração & dosagem , Anti-Inflamatórios/administração & dosagem , Citocinas/metabolismo , Modelos Animais de Doenças , Emodina/análogos & derivados , Emodina/farmacologia , Células HaCaT , Humanos , Imiquimode/farmacologia , Inflamação/tratamento farmacológico , Queratinócitos/metabolismo , Macrófagos/metabolismo , Camundongos , Psoríase/metabolismo , Absorção Cutânea , Suínos
9.
Anticancer Res ; 41(12): 6135-6145, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34848468

RESUMO

BACKGROUND/AIM: This study aimed to explore RGS2 as a regulator of melanoma cell growth. MATERIALS AND METHODS: Effect of RGS2 over-expression was analyzed in three melanoma cell lines, and Rgs2 knockdown was performed in zebrafish. RESULTS: RGS2 was differentially expressed among the cell lines. In B16F10 cells, RGS2 over-expression inhibited MAPK and AKT activation, and prevented cell growth. A similar outcome was observed in A375 cells, but the MAPK signals were not suppressed. In A2058 cells, RGS2 repressed AKT activation, but without affecting cell growth. Moreover, MAPK and AKT constitutive activation abolished the RGS2 inhibitory effect on B16F10 cell growth. Rgs2 knockdown caused ectopic melanocyte differentiation, and promoted MAPK and AKT activation in zebrafish embryos. CONCLUSION: RGS2 prevents melanoma cell growth by inhibiting MAPK and AKT, but this effect depends on the overall cell genetic landscape. Further studies are warranted to investigate the anticancer therapeutic potential of RGS2 for melanoma.


Assuntos
Sequências Hélice-Alça-Hélice/fisiologia , Melanoma/tratamento farmacológico , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas RGS/uso terapêutico , Animais , Humanos , Melanoma/fisiopatologia , Proteínas RGS/farmacologia , Transdução de Sinais , Peixe-Zebra
10.
Int J Mol Sci ; 22(19)2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34638757

RESUMO

While psoriasis is known as a T cell- and dendritic cell-driven skin inflammation disease, macrophages are also reported to play some roles in its development. However, the signaling pathway of activated macrophages contributing to psoriasis is not entirely understood. Thus, we aimed to explore the possible mechanisms of how macrophages initiate and sustain psoriasis. The differentiated THP1 cells, stimulated by imiquimod (IMQ), were utilized as the activated macrophage model. IMQ was also employed to produce psoriasis-like lesions in mice. A transcriptomic assay of macrophages revealed that the expressions of pro-inflammatory mediators and GDAP1L1 were largely increased after an IMQ intervention. The depletion of GDAP1L1 by short hairpin (sh)RNA could inhibit cytokine release by macrophages. GDAP1L1 modulated cytokine production by activating the phosphorylation of mitogen-activated protein kinases (MAPKs) and nuclear factor (NF)-κB pathways. Besides GDAP1L1, another mitochondrial fission factor, Drp1, translocated from the cytosol to mitochondria after IMQ stimulation, followed by the mitochondrial fragmentation according to the immunofluorescence imaging. Clodronate liposomes were injected into the mice to deplete native macrophages for examining the latter's capacity on IMQ-induced inflammation. The THP1 cells, with or without GDAP1L1 silencing, were then transplanted into the mice to monitor the deposition of macrophages. We found a significant THP1 accumulation in the skin and lymph nodes. The silencing of GDAP1L1 in IMQ-treated animals reduced the psoriasiform severity score from 8 to 2. After depleting GDAP1L1, the THP1 recruitment in the lymph nodes was decreased by 3-fold. The skin histology showed that the GDAP1L1-mediated macrophage activation induced neutrophil chemotaxis and keratinocyte hyperproliferation. Thus, mitochondrial fission can be a target for fighting against psoriatic inflammation.


Assuntos
Imiquimode/efeitos adversos , Macrófagos/metabolismo , Dinâmica Mitocondrial/efeitos dos fármacos , Proteínas Mitocondriais/metabolismo , Psoríase , Animais , Feminino , Humanos , Imiquimode/farmacologia , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/patologia , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos BALB C , Psoríase/induzido quimicamente , Psoríase/metabolismo , Psoríase/patologia , Células THP-1
11.
Expert Opin Drug Deliv ; 18(11): 1609-1625, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34254868

RESUMO

Introduction: The use of herbal compounds in cancer therapy has great potential to promote the efficacy of current cancer therapeutic strategies. Herbal compounds were successfully reported to enhance tumor cells sensitization to the action of chemo-, hormonal- and gene-therapeutic agents via different mechanisms. Herbal ingredients can affect different signaling pathways, reduce the toxic side effects or inhibit the efflux of anticancer drugs.Areas covered: This review will discuss the delivery of herbal compounds with other cancer treatments such as hormonal, small molecule inhibitors and inorganic hybrids to tumor cells. An overview of physicochemical properties of herbal components that require intelligent design of combo-nanomedicines for efficient co-delivery of those herbal-derived and other anticancer agents was discussed. Nanocarriers provide various benefits to overcome the shortcomings of the encapsulated herbal compounds including improved solubility, increased stability and enhanced tumor targeting. Different nanocarrier systems were the focus of this review.Expert opinion: Multifunctional nanocarrier systems encapsulating herbal and different anticancer drugs showed to be a wonderful approach in the treatment of cancer enabling the co-delivery of anticancer drugs with versatile modes of action in an accurate manner in an attempt to enhance the efficacy, benefit from the synergism between the drugs as well as to minimize the development of multi-drug resistance. The main challenge point is the early detection and management of any developed adverse effect.


Assuntos
Antineoplásicos , Neoplasias , Antineoplásicos/uso terapêutico , Sistemas de Liberação de Medicamentos , Humanos , Nanomedicina , Neoplasias/tratamento farmacológico , Resultado do Tratamento
12.
Front Immunol ; 12: 664425, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34054833

RESUMO

Antrodia cinnamomea exhibits anti-inflammatory, antioxidant, and immunomodulatory activities. We aimed to explore the antipsoriatic potential of 2,4-dimethoxy-6-methylbenzene-1,3-diol (DMD) derived from A. cinnamomea. The macrophages activated by imiquimod (IMQ) were used as the cell model for examining the anti-inflammatory effect of DMD in vitro. A significantly high inhibition of IL-23 and IL-6 by DMD was observed in THP-1 macrophages and bone marrow-derived mouse macrophages. The conditioned medium of DMD-treated macrophages could reduce neutrophil migration and keratinocyte overproliferation. DMD could downregulate cytokine/chemokine by suppressing the phosphorylation of mitogen-activated protein kinases (MAPKs) and NF-κB. We also observed inhibition of GDAP1L1/Drp1 translocation from the cytoplasm to mitochondria by DMD intervention. Thus, mitochondrial fission could be a novel target for treating psoriatic inflammation. A psoriasiform mouse model treated by IMQ showed reduced scaling, erythema, and skin thickening after topical application of DMD. Compared to the IMQ stimulation only, the active compound decreased epidermal thickness by about 2-fold. DMD diminished the number of infiltrating macrophages and neutrophils and their related cytokine/chemokine production in the lesional skin. Immunostaining of the IMQ-treated skin demonstrated the inhibition of GDAP1LI and phosphorylated Drp1 by DMD. The present study provides insight regarding the potential use of DMD as an effective treatment modality for psoriatic inflammation.


Assuntos
Derivados de Benzeno/farmacologia , Dinaminas/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Polyporales/química , Animais , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Imuno-Histoquímica , Ativação de Macrófagos/genética , Ativação de Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Fosforilação/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Psoríase/etiologia , Psoríase/metabolismo , Psoríase/patologia , Transdução de Sinais/efeitos dos fármacos
13.
J Control Release ; 333: 487-499, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33845057

RESUMO

Psoriasis is a chronic autoimmune skin disorder that involves keratinocyte hyperproliferation and inflammatory cell recruitment. A strategy to mitigate psoriatic lesions is to induce keratinocyte apoptosis for proliferation suppression. Herein we designed a nanoformulation capable of treating psoriasis via hyperthermia-induced apoptosis in response to near-infrared (NIR) irradiation. To this end, gold nanorods (GNRs) and isatin, which is an anti-inflammatory agent for synergizing antipsoriatic activity, were loaded into a poly (lactic-co-glycolic acid) (PLGA) matrix to form the nanocomplexes. The physicochemical and photothermal properties of the nanocomplexes were determined in terms of size, surface charge, NIR-absorbing feature, isatin release, keratinocyte uptake, and cytotoxicity. The nanocomplexes showed a spherical shape with an average size of about 180 nm. The GNR-loaded nanoparticles can efficiently convert NIR light at 0.42 W/cm2 into heat with an increased temperature of 10 °C. When combined with NIR exposure, the nanocomplexes were internalized into keratinocyte cytoplasm with an inhibition of keratinocyte viability to about 60%. Live/dead cell assay and flow cytometry confirmed that the nanocomplexes could serve as NIR-absorbers to specifically elicit keratinocyte apoptosis through caspase and poly ADP-ribose polymerase (PARP) pathways. The in vivo psoriasiform murine model indicated that the combined nanocomplexes and NIR inhibited epidermal hyperplasia and neutrophil infiltration. The overexpressed cytokines in the lesion could be recovered to normal baseline level after the photothermal management. The subcutaneous nanocomplexes remained in the skin for at least 5 days. The nanocomposites produced a negligible toxicity in the skin or liver of healthy mice. The photothermal nanosystems, as designed in this study, shed new light on the therapeutic approach against psoriasis.


Assuntos
Hipertermia Induzida , Isatina , Nanotubos , Psoríase , Animais , Linhagem Celular Tumoral , Ouro , Raios Infravermelhos , Camundongos , Fototerapia , Psoríase/terapia
14.
Theranostics ; 11(10): 4567-4584, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33754014

RESUMO

To improve the treatment of psoriasiform inflammation, we developed actively targeted nanocarriers loaded with the phosphodiesterase 4 inhibitor AN2728. Methods: Phospholipid-poly(lactic-co-glycolic acid) nanohybrids were prepared and conjugated with monovalent anti-desmoglein 3 antibody to bind keratinocytes. Results: The actively targeted nanohybrids were 229 nm in mean size with a nearly neutral surface charge. Flow cytometry and confocal microscopy showed a 9-fold increase in keratinocyte uptake of targeted nanohybrids relative to non-targeted nanoparticles. The nanoparticles localized mainly in lysosomes after internalization. AN2728-loaded antibody-conjugated nanocarriers inhibited cytokine/chemokine overexpression in activated keratinocytes without affecting cell viability. The targeted nanohybrids also suppressed neutrophil migration by reducing CXCL1 and CXCL2 release from keratinocytes. Following subcutaneous administration in mice, the nanohybrids distributed to the epidermis and hair follicles. In a psoriasis-like skin mouse model, the actively targeted nanoparticles were superior to free drug and non-targeted nanoparticles in mitigating skin inflammation. Intervention with the targeted nanosystem reduced the epidermal thickness of the psoriasiform lesion from 191 to 42 µm, decreased the Psoriasis Area Severity Index by 74%, restored barrier function, and returned chemokine levels to baseline. Conclusions: Our developed nanosystem was safe and demonstrated efficient targeting properties for the treatment of cutaneous inflammation.


Assuntos
Compostos de Boro/administração & dosagem , Compostos Bicíclicos Heterocíclicos com Pontes/administração & dosagem , Imunoconjugados/farmacologia , Queratinócitos/efeitos dos fármacos , Nanopartículas , Inibidores da Fosfodiesterase 4/administração & dosagem , Fosfolipídeos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Psoríase/imunologia , Animais , Anticorpos/imunologia , Compostos de Boro/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Quimiocina CXCL1/efeitos dos fármacos , Quimiocina CXCL1/imunologia , Quimiocina CXCL2/efeitos dos fármacos , Quimiocina CXCL2/imunologia , Quimiotaxia/efeitos dos fármacos , Desmogleína 3/imunologia , Modelos Animais de Doenças , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Epiderme , Células HaCaT , Folículo Piloso , Humanos , Inflamação , Queratinócitos/imunologia , Lisossomos/metabolismo , Lisossomos/ultraestrutura , Masculino , Camundongos , Neutrófilos/efeitos dos fármacos , Inibidores da Fosfodiesterase 4/farmacologia , Psoríase/patologia
15.
Int J Pharm ; 595: 120242, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33484919

RESUMO

Platelet-rich plasma (PRP) is rich in cytokines and growth factors and is a novel approach for tissue regeneration. It can be used for skin rejuvenation but the large molecular size of the actives limits its topical application. In this study, low-fluence laser-facilitated PRP was delivered to evaluate its effect on absorption through the skin, infection-induced wound, and photoaging. The PRP permeation enhancement was compared for two ablative lasers: fractional (CO2) laser and fully-ablative (Er:YAG) laser. In the Franz cell experiment, pig skin was treated with lasers with superficial ablation followed by the application of recombinant cytokines, growth factors, or PRP. The transport of interferon (IFN)-γ and tumor necrosis factor (TNF)-α was negligible in intact skin and stratum corneum (SC)-stripped skin. Both lasers significantly elevated skin deposition of IFN-γ and TNF-α from PRP, and fully-ablative laser showed a higher penetration enhancement. A similar tendency was found for vascular endothelial growth factor and epidermal growth factor. Er:YAG laser-exposed skin displayed 1.8- and 3.9-fold higher skin deposition of platelet-derived growth factor (PDGF)-BB and transforming growth factor (TGF)-ß1 from PRP, respectively. According to the confocal images, both laser interventions led to an extensive and deep distribution of IFN-γ and PDGF-BB in the skin. In the in vivo methicillin-resistant Staphylococcus aureus (MRSA) infection model, CO2 laser- and Er:YAG laser-assisted PRP delivery reduced bacterial load from 1.8 × 106 to 5.9 × 105 and 1.4 × 104 colony-forming units, respectively. The open wound induced by MRSA was closed by the laser-assisted PRP penetration. In the mouse photoaging model, elastin and collagen deposition were fully restored by combined PRP and full-ablative laser but not by PRP alone and PRP combined with fractional laser. Laser-facilitated PRP delivery even with a low fluence setting can be considered a promising strategy for treating some dermatological disorders.


Assuntos
Terapia com Luz de Baixa Intensidade/métodos , Staphylococcus aureus Resistente à Meticilina/efeitos da radiação , Plasma Rico em Plaquetas/metabolismo , Envelhecimento da Pele/efeitos da radiação , Dermatopatias/terapia , Pele/efeitos da radiação , Infecções Cutâneas Estafilocócicas/terapia , Administração Cutânea , Animais , Terapia Combinada , Citocinas/farmacocinética , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/farmacocinética , Lasers de Gás/uso terapêutico , Lasers de Estado Sólido/uso terapêutico , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Pele/diagnóstico por imagem , Pele/efeitos dos fármacos , Pele/metabolismo , Absorção Cutânea/efeitos da radiação , Envelhecimento da Pele/efeitos dos fármacos , Suínos , Cicatrização/efeitos dos fármacos , Cicatrização/efeitos da radiação
16.
J Food Drug Anal ; 29(1): 15-38, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35696226

RESUMO

Resveratrol has been extensively reported as a potential compound to treat some skin disorders, including skin cancer, photoaging, allergy, dermatitis, melanogenesis, and microbial infection. There has been an increasing interest in the discovery of cosmetic application using resveratrol as the active ingredient because of its anti-aging and skin lightening activities. The naturally occurring derivatives of resveratrol also exert a beneficial effect on the skin. There are four groups of resveratrol derivatives, including hydroxylated compounds, methoxylated compounds, glycosides, and oligomers. The major mechanism of resveratrol and its derivatives for attenuating cutaneous neoplasia, photoaging and inflammation, are related with its antioxidative activity to scavenge hydroxyl radical, nitric oxide and superoxide anion. A systematic review was conducted to describe the association between resveratrol-related compounds and their benefits on the skin. Firstly, the chemical classification of resveratrol and its derivatives was introduced. In this review the cases which were treated for different skin conditions by resveratrol and the derivatives were also described. The use of nanocarriers for efficient resveratrol skin delivery is also introduced here. This review summarizes the cutaneous application of resveratrol and the related compounds as observed in the cell-based, animal-based and clinical models. The research data in the present study relates to the management of resveratrol for treating skin disorders and suggesting a way forward to achieve advancement in using it for cosmetic and dermatological purpose.


Assuntos
Cosméticos , Dermatopatias , Estilbenos , Animais , Antioxidantes/farmacologia , Resveratrol/farmacologia , Pele , Dermatopatias/tratamento farmacológico , Estilbenos/farmacologia
17.
Molecules ; 25(23)2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33287318

RESUMO

Diabetes mellitus is a well-known chronic metabolic disease that poses a long-term threat to human health and is characterized by a relative or absolute lack of insulin, resulting in hyperglycemia. Type 2 diabetes mellitus (T2DM) typically affects many metabolic pathways, resulting in ß-cell dysfunction, insulin resistance, abnormal blood glucose levels, inflammatory processes, excessive oxidative reactions, and impaired lipid metabolism. It also leads to diabetes-related complications in many organ systems. Antidiabetic drugs have been approved for the treatment of hyperglycemia in T2DM; these are beneficial for glucose metabolism and promote weight loss, but have the risk of side effects, such as nausea or an upset stomach. A wide range of active components, derived from medicinal plants, such as alkaloids, flavonoids, polyphenol, quinones, and terpenoids may act as alternative sources of antidiabetic agents. They are usually attributed to improvements in pancreatic function by increasing insulin secretions or by reducing the intestinal absorption of glucose. Ease of availability, low cost, least undesirable side effects, and powerful pharmacological actions make plant-based preparations the key player of all available treatments. Based on the study of therapeutic reagents in the pathogenesis of humans, we use the appropriate animal models of T2DM to evaluate medicinal plant treatments. Many of the rat models have characteristics similar to those in humans and have the advantages of ease of genetic manipulation, a short breeding span, and access to physiological and invasive testing. In this review, we summarize the pathophysiological status of T2DM rat models and focus on several bioactive compounds from herbal medicine with different functional groups that exhibit therapeutic potential in the T2DM rat models, in turn, may guide future approach in treating diabetes with natural drugs.


Assuntos
Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Animais , Modelos Animais de Doenças , Humanos , Hiperglicemia/tratamento farmacológico , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Plantas Medicinais/química , Ratos
18.
Biomaterials ; 263: 120355, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32932142

RESUMO

Recent progress in protein-based nanomedicine, inspired by the success of Abraxane® albumin-paclitaxel nanoparticles, have resulted in novel therapeutics used for treatment of challenging diseases like cancer and viral infections. However, absence of specific drug targeting, poor pharmacokinetics, premature drug release, and off-target toxicity are still formidable challenges in the clinic. Therefore, alternative protein-based nanomedicines were developed to overcome those challenges. In this regard, lactoferrin (Lf), a glycoprotein of transferrin family, offers a promising biodegradable well tolerated material that could be exploited both as an active therapeutic and drug nanocarrier. This review highlights the major pharmacological actions of Lf including anti-cancer, antiviral, and immunomodulatory actions. Delivery technologies of Lf to improve its pries and enhance its efficacy were also reviewed. Moreover, different nano-engineering strategies used for fabrication of drug-loaded Lf nanocarriers were discussed. In addition, the use of Lf for functionalization of drug nanocarriers with emphasis on tumor-targeted drug delivery was illustrated. Besides its wide application in oncology nano-therapeutics, we discussed the recent advances of Lf-based nanocarriers as efficient platforms for delivery of anti-parkinsonian, anti-Alzheimer, anti-viral drugs, immunomodulatory and bone engineering applications.


Assuntos
Lactoferrina , Nanopartículas , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Ligantes
19.
Front Oncol ; 10: 1319, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32850418

RESUMO

Magnolia officinalis is widely used in Southeast Asian countries for the treatment of fever, headache, diarrhea, and stroke. Magnolol is a phenolic compound extracted from M. officinalis, with proven antibacterial, antioxidant, anti-inflammatory, and anticancer activities. In this study, we modified magnolol to synthesize a methoxylated derivative, 2-O-methylmagnolol (MM1), and investigated the use of MM1, and magnolol in the treatment of liver cancer. We found that both magnolol and MM1 exhibited inhibitory effects on the growth, migration, and invasion of hepatocellular carcinoma (HCC) cell lines and halted the cell cycle at the G1 phase. MM1 also demonstrated a substantially better tumor-suppressive effect than magnolol. Further analysis suggested that by inhibiting class I histone deacetylase expression in HCC cell lines, magnolol and MM1 induced p21 expression and p53 activation, thereby causing cell cycle arrest and inhibiting HCC cell growth, migration, and invasion. Subsequently, we verified the significant tumor-suppressive effects of magnolol and MM1 in an animal model. Collectively, these findings demonstrate the anti-HCC activities of magnolol and MM1 and their potential for clinical use.

20.
J Dermatol Sci ; 99(2): 90-99, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32622642

RESUMO

BACKGROUND: Thalidomide can be a TNF-α inhibitor for treating skin inflammation. This drug exhibits a strong toxicity that limits its application. OBJECTIVE: We synthesized a thalidomide analog containing the benzyl chloride group (2-[1-(3-chlorobenzyl)-2,6-dioxopiperidin-3-yl]isoindoline-1,3-dione, CDI) to examine anti-inflammatory activity against psoriasis. METHODS: The evaluation was conducted by the experimental platforms of in vitro TNF-α- or imiquimod (IMQ)-stimulated HaCaT cells and in vivo IMQ-induced psoriasiform plaque. RESULTS: Using the in vitro keratinocyte model, we demonstrated a greater inhibition of IL-1ß, IL-6, and IL-24 by CDI than by thalidomide. No significant cytotoxicity was observed at 100 µM. CDI delivered facilely into the skin with a cutaneous targeting ability 228-fold greater than thalidomide. CDI caused a negligible irritation on healthy mouse skin. We showed that topically applied CDI reduced IMQ-induced red scaly lesions, hyperplasia, microabscesses, and cytokine expression in the mouse model. The skin-barrier function measured by transepidermal water loss (TEWL) could be partially recovered from 50.6-36.3 g/m2/h by CDI. The mechanistic study showed that CDI suppressed cytokine production by inhibiting the phosphorylation of NF-κB and AP-1 via MAPK pathways. CONCLUSION: CDI would be beneficial for the development of a therapeutic agent against psoriasis.


Assuntos
Queratinócitos/efeitos dos fármacos , Psoríase/tratamento farmacológico , Pele/efeitos dos fármacos , Talidomida/farmacologia , Administração Cutânea , Animais , Modelos Animais de Doenças , Células HaCaT , Humanos , Imiquimode/administração & dosagem , Imiquimode/imunologia , Queratinócitos/imunologia , Queratinócitos/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/imunologia , Masculino , Camundongos , NF-kappa B/metabolismo , Fosforilação/efeitos dos fármacos , Fosforilação/imunologia , Psoríase/imunologia , Psoríase/patologia , Pele/imunologia , Pele/patologia , Talidomida/análogos & derivados , Talidomida/uso terapêutico , Fator de Transcrição AP-1/metabolismo , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA