Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Radiat Oncol J ; 41(2): 61-68, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37403348

RESUMO

Radiation enteritis is a kind of intestinal radiation injury in patients with pelvic and retroperitoneal malignancies after radiotherapy, and its occurrence and development process are very complicated. At present, studies have confirmed that intestinal microecological imbalance is an important factor in the formation of this disease. Abdominal radiation causes changes in the composition of the flora and a decrease in its diversity, which is mainly manifested by a decrease in beneficial bacterial species such as Lactobacilli and Bifidobacteria. Intestinal dysbacteriosis aggravates radiation enteritis, weakens the function of the intestinal epithelial barrier, and promotes the expression of inflammatory factors, thereby aggravating the occurrence of enteritis. Given the role of the microbiome in radiation enteritis, we suggest that the gut microbiota may be a potential biomarker for the disease. Treatment methods such as probiotics, antibiotics, and fecal microbiota transplantation are ways to correct the microbiota and may be an effective way to prevent and treat radiation enteritis. Based on a review of the relevant literature, this paper reviews the mechanism and treatment of intestinal microbes in radiation enteritis.

2.
J Nippon Med Sch ; 90(1): 89-95, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36908130

RESUMO

BACKGROUND: Oxidative stress is an important mechanism in liver ischemia/reperfusion (I/R) injury. Hepatocyte apoptosis and proliferation occur in parallel with liver I/R injury, and the degree of apoptosis and proliferation determines the effects on hepatocytes. Vitamin D receptor (VDR) can lessen liver I/R injury, but previous studies focused mostly on inflammation and immunity. METHODS: H2O2 was used to induce hepatocyte injury. Before treatment with H2O2, Hep-3B cells were pretreated with paricalcitol (PC) and siRNA-VDR. Rapamycin and chloroquine were also applied in the study. RESULTS: The number of apoptotic cells was measured with an annexin V (AV) -fluorescein isothiocyanate apoptosis detection kit. Expression of proteins was measured by western blotting. As compared with the H2O2+Hep-3B group, levels of AV/PI, cleaved caspase-3, and p62 were lower, and expression levels of Bcl-2, proliferating cell nuclear antigen, and VDR were higher, in the PC+H2O2+Hep-3B group. When the VDR gene was silenced by siRNA-VDR in the siRNA-VDR+H2O2+Hep-3B group, expressions of AV/PI, cleaved caspase-3, and p62 were upregulated, and expressions of Bcl-2, proliferating cell nuclear antigen, and VDR were downregulated, as compared with values for the siRNA-NC+H2O2+Hep-3B group. Treatment with rapamycin or chloroquine partially reversed the effect of PC and siRNA-VDR on apoptosis and proliferation. CONCLUSIONS: VDR mediates hepatocyte apoptosis and proliferation through autophagy.


Assuntos
Peróxido de Hidrogênio , Receptores de Calcitriol , Humanos , Apoptose , Autofagia/fisiologia , Caspase 3/farmacologia , Proliferação de Células , Cloroquina/farmacologia , Hepatócitos/metabolismo , Peróxido de Hidrogênio/farmacologia , Antígeno Nuclear de Célula em Proliferação/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/farmacologia , Receptores de Calcitriol/metabolismo , RNA Interferente Pequeno/farmacologia , Sirolimo/farmacologia
3.
Med Sci Monit ; 27: e930457, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34489390

RESUMO

BACKGROUND We aimed to evaluate the value of prophylactic extended-field intensity-modulated radiation therapy (IMRT) in the treatment of locally advanced cervical cancer with multiple pelvic lymph node metastases (≥2) and negative common iliac and paraaortic lymph nodes. MATERIAL AND METHODS Thirty-four patient with newly diagnosed cervical cancer (IB1-IVA) and multiple pelvic lymph node metastases (≥2) confirmed by computed tomography and magnetic resonance imaging were randomly divided into an extended-field group (17 patients) and a pelvic-field group (17 patients). In the extended-field group, we added the drainage area of paraaortic lymph nodes on the pelvic field. The pelvic field was administered Dt 45.0 to 50.4 Gy, while the drainage area of paraaortic lymph nodes was administered Dt 40.0 to 45.0 Gy. Both groups were given Irl92 intracavitary radiotherapy after 3 weeks of external irradiation. The total dose of point A was 25.0 to 30.0 Gy, fractional 6.0 to 7.0 Gy. All patients had concurrent platinum-based chemotherapy once weekly until the end of radiotherapy. RESULTS No paraaortic lymph node metastasis was found in the extended-field group (P=0.0184), and disease-free survival (DFS) was prolonged (P=0.0286). Adverse effects in patients with III-IV degree myelosuppression were increased in the extended-field group (P=0.0324). However, all patients recovered after symptomatic treatment. CONCLUSIONS Prophylactic extended-field IMRT with chemotherapy reduced the metastasis rate of paraaortic lymph nodes and prolonged the DFS in patients with locally advanced cervical cancer and multiple pelvic lymph node metastases (≥2), while the toxic adverse effects were tolerated.


Assuntos
Radioterapia de Intensidade Modulada , Neoplasias do Colo do Útero/radioterapia , Feminino , Humanos , Metástase Linfática , Pessoa de Meia-Idade , Radioterapia de Intensidade Modulada/efeitos adversos , Neoplasias do Colo do Útero/patologia
4.
Biochem Biophys Res Commun ; 521(1): 212-219, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31635808

RESUMO

Liver sinusoidal endothelial cells play a key role maintaining the hepatic homeostasis, the disruption of which is associated with such end-stage liver diseases as hepatocellular carcinoma and cirrhosis. In the present study we investigated the role of brahma-related gene 1 (BRG1), a chromatin remodeling protein, in regulating endothelial transcription and the implication in liver fibrosis. We report that endothelial-specific deletion of BRG1 in mice attenuated liver fibrosis induced by injection with thioacetamide (TAA). Coincidently, alleviation of liver fibrosis as a result of endothelial BRG1 deletion was accompanied by an up-regulation of eNOS activity and NO bioavailability. In cultured endothelial cells, exposure to lipopolysaccharide (LPS) suppressed eNOS activity whereas BRG1 depletion with small interfering RNA restored eNOS-dependent NO production. Further analysis revealed that BRG1 was recruited to the caveolin-1 (CAV1) promoter by Sp1 and activated transcription of CAV1, which in turn inhibited eNOS activity. Mechanistically, BRG1 interacted with the H3K4 trimethyltransferase MLL1 to modulate H3K4 trimethylation surrounding the CAV1 promoter thereby contributing to LPS-induced CAV1 activation. In conclusion, our data unveil a novel role for BRG1 in the regulation of endothelial function and liver fibrosis.


Assuntos
DNA Helicases/metabolismo , Células Endoteliais/metabolismo , Fibrose/metabolismo , Fígado/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Animais , Células Cultivadas , DNA Helicases/deficiência , DNA Helicases/isolamento & purificação , Fibrose/induzido quimicamente , Humanos , Fígado/efeitos dos fármacos , Camundongos , Óxido Nítrico/análise , Proteínas Nucleares/deficiência , Proteínas Nucleares/isolamento & purificação , Tioacetamida , Fatores de Transcrição/deficiência , Fatores de Transcrição/isolamento & purificação
5.
Onco Targets Ther ; 12: 9513-9525, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31807027

RESUMO

BACKGROUND: Accumulating evidences suggest that microRNAs (miRNAs) play key roles in mediating glioblastoma progression. Decreased expression of miR-152-3p was reported in several cancer types including glioblastoma. METHODS: The sensitivity of glioblastoma cells to cisplatin was assessed by the cell counting kit-8 assay and flow cytometry analysis. The expression of miR-152-3p was determined by RT-qPCR method. Bioinformatic analysis, dual luciferase reporter assay and Western blot were used to explore the target gene of miR-152-3p. The association between miR-152-3p and SOS1 was confirmed in glioblastoma tissues by Pearson correlation analysis. RESULTS: In the current study, we discovered that overexpression of miR-152-3p increased cisplatin sensitivity while inhibition of miR-152-3p decreased cisplatin sensitivity in glioblastoma cells (T98G and U87). In addition, miR-152-3p augmented cell apoptosis induced by cisplatin treatment. It was further predicted and validated that SOS1, a protein involved in regulating chemotherapy sensitivity, was a direct target gene of miR-152-3p. SOS1 was proven to suppress the cytotoxic effect of cisplatin in glioblastoma. Transfection of recombinant SOS1 could effectively reverse the increased cisplatin sensitivity induced by miR-152-3p overexpression in T98G. Furthermore, overexpression of SOS1 reduced the percentage of apoptotic cells increased by miR-152-3p mimic in the presence of cisplatin in T98G. More importantly, a significant negative correlation between miR-152-3p levels and SOS1 levels was observed in glioblastoma tissues collected from 40 patients. CONCLUSION: Our study identified miR-152-3p as a chemotherapy sensitizer in glioblastoma.

6.
Oncogenesis ; 8(11): 66, 2019 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-31695026

RESUMO

Malignant lung cancer cells are characterized by uncontrolled proliferation and migration. Aberrant lung cancer cell proliferation and migration are programmed by altered cancer transcriptome. The underlying epigenetic mechanism is unclear. Here we report that expression levels of BRG1, a chromatin remodeling protein, were significantly up-regulated in human lung cancer biopsy specimens of higher malignancy grades compared to those of lower grades. Small interfering RNA mediated depletion or pharmaceutical inhibition of BRG1 suppressed proliferation and migration of lung cancer cells. BRG1 depletion or inhibition was paralleled by down-regulation of cyclin B1 (CCNB1) and latent TGF-ß binding protein 2 (LTBP2) in lung cancer cells. Further analysis revealed that BRG1 directly bound to the CCNB1 promoter to activate transcription in response to hypoxia stimulation by interacting with E2F1. On the other hand, BRG1 interacted with Sp1 to activate LTBP2 transcription. Mechanistically, BRG1 regulated CCNB1 and LTBP2 transcription by altering histone modifications on target promoters. Specifically, BRG1 recruited KDM3A, a histone H3K9 demethylase, to remove dimethyl H3K9 from target gene promoters thereby activating transcription. KDM3A knockdown achieved equivalent effects as BRG1 silencing by diminishing lung cancer proliferation and migration. Of interest, BRG1 directly activated KDM3A transcription by forming a complex with HIF-1α. In conclusion, our data unveil a novel epigenetic mechanism whereby malignant lung cancer cells acquired heightened ability to proliferate and migrate. Targeting BRG1 may yield effective interventional strategies against malignant lung cancers.

7.
Am J Transl Res ; 11(7): 4077-4088, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31396319

RESUMO

Lung cancer is one of the most common human cancers and is the leading cause of cancer-related mortality. Previous studies have suggested that IL-22 might promote the survival of human lung cancer cells. However, the source of IL-22 and the regulatory mechanism of lung cancer cell proliferation remain unclear. In this study, we found that the expression of IL-22 was upregulated in non-small-cell lung cancer (NSCLC) tumor specimens, as revealed by RT-qPCR analysis. Furthermore, IL-22 was profoundly elevated in cell cultures of primary cancer-associated fibroblasts (CAFs) compared to the levels in cell cultures of normal fibroblasts. Moreover, treatment with the supernatant of CAF cell cultures significantly increased the proliferation, migration and invasion of A549 and H1650 cells but reduced apoptosis via the activation of PI3K-Akt-mTOR signaling, and the application of an anti-IL-22 antibody can partially block the effects induced by the CAF cell culture supernatant. Finally, we also identified a panel of critical genes with differential expression between A549 cells treated with and without IL-22. In summary, our results demonstrate a novel regulatory function of IL-22 secreted by CAFs in NSCLC and provide a potential therapeutic target for treating lung cancer.

8.
Gene ; 715: 144015, 2019 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-31357025

RESUMO

Tripartite Motif Containing 13 (TRIM13), a member of TRIM proteins, is deleted in multiple tumor types, especially in B-cell chronic lymphocytic leukemia and multiple myeloma. The present study explored the expression and potential role of TRIM13 in non-small-cell lung carcinoma (NSCLC). We found that TRIM13 mRNA and protein expression was reduced in NSCLC tissues and cell lines in comparison to paired non-cancerous tissues and a human normal bronchial epithelial cell line, respectively. Overexpression of TRIM13 in NCI-H1975 and SPC-A-1 cells hampered cell proliferation. Additionally, TRIM13 overexpression increased the levels of cleaved caspase-3. TRIM13-induced NSCLC cell apoptosis was attenuated by a caspase-3 inhibitor Ac-DEVD-CHO, suggesting that TRIM13 induced cell apoptosis partially through a caspase-3-dependent pathway. Moreover, it has been reported that TRIM13 can regulate nuclear factor kappaB (NF-κB) activity. Our data showed that TRIM13 overexpression inactivated NF-κB as indicated by the increased cytosolic NF-κB and decreased nuclear NF-κB. Exposure to an NF-κB inhibitor PDTC significantly blocked the impact of TRIM13 knockdown on cell proliferation and apoptosis, indicating the functions of TRIM13 in NSCLC cells were mediated by the NF-κB pathway. Finally, we demonstrated that TRIM13 overexpression suppressed tumor growth and induced cell apoptosis in vivo by using a xenograft mouse model. Collectively, our results indicate that TRIM13 behaves as a tumor suppressor in NSCLC through regulating NF-κB pathway. Our findings may offer a promising therapeutic target for NSCLC.


Assuntos
Apoptose , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Proliferação de Células , Proteínas de Ligação a DNA/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Células A549 , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Proteínas de Ligação a DNA/genética , Feminino , Xenoenxertos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Camundongos Nus , NF-kappa B/genética , Transplante de Neoplasias , Transdução de Sinais , Proteínas Supressoras de Tumor/genética
9.
Biochim Biophys Acta Gene Regul Mech ; 1862(8): 834-845, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31154107

RESUMO

Prostate cancer malignancies are intimately correlated with deregulated fatty acid metabolism. The underlying epigenetic mechanism is not fully understood. In the present study we investigated the mechanism whereby the chromatin remodeling protein BRG1 regulates the transcription of long-chain fatty acid elongase 3 (Elovl3) in prostate cancer cells. We report that in response to pro-metastatic cues (androgen and TGF-ß) BRG1 expression was up-regulated along with Elvol3 in prostate cancer cells. BRG1 over-expression potentiated whereas BRG1 knockdown attenuated prostate cancer cell migration and invasion. Coincidently, Elovl3 was up-regulated following BRG1 over-expression and down-regulated after BRG1 knockdown in prostate cancer cells. Further analysis revealed that BRG1 interacted with and was recruited by retinoic acid receptor-related orphan receptor (RORγ) to the Elovl3 promoter to activate transcription. Chromatin immunoprecipitation (ChIP) profiling demonstrated that BRG1 interacted with histone acetyltransferase p300 to activate Elovl3 transcription. Depletion of p300 by siRNA or inhibition of p300 by curcumin attenuated Elovl3 trans-activation in prostate cancer cells. Together, our data identify a novel epigenetic pathway that links Elovl3 transcription to prostate cancer cell migration and invasion.


Assuntos
Acetiltransferases/genética , DNA Helicases/metabolismo , Proteínas Nucleares/metabolismo , Neoplasias da Próstata/metabolismo , Fatores de Transcrição/metabolismo , Ativação Transcricional , Regulação para Cima , Linhagem Celular Tumoral , Movimento Celular , Montagem e Desmontagem da Cromatina , Epigênese Genética , Elongases de Ácidos Graxos , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Metástase Neoplásica , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Regiões Promotoras Genéticas , Neoplasias da Próstata/genética , Fatores de Transcrição de p300-CBP
10.
Biochim Biophys Acta Gene Regul Mech ; 1862(5): 547-556, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30946989

RESUMO

Claudins are a group of cell tight junction proteins that play versatile roles in cancer biology. Recent studies have correlated down-regulation of Claudins with augmented breast cancer malignancy and poor prognosis. The mechanism underlying repression of Claudin transcription in breast cancer cells is not well understood. Here we report that expression levels of Brahma (BRM) were down-regulated in triple negative breast cancer cells (MDA-231) compared to the less malignant MCF-7 cells and in high-grade human breast cancer specimens compared to low-grade ones. TGF-ß treatment in MCF-7 cells repressed BRM transcription likely through targeting C/EBPß. BRM over-expression suppressed whereas BRM knockdown promoted TGF-ß induced migration and invasion of MCF-7 cells. BRM down-regulation was accompanied by the loss of a panel of Claudins in breast cancer cells. BRM directly bound to the promoter region of Claudin genes via interacting with Sp1 and activated transcription by modulating histone modifications. Together, our data have identified a novel epigenetic pathway that links Claudin transcription to breast cancer metastasis.


Assuntos
Neoplasias da Mama/genética , Claudina-1/genética , Regulação Neoplásica da Expressão Gênica , Fatores de Transcrição/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Claudina-1/biossíntese , Feminino , Código das Histonas , Humanos , Células MCF-7 , Invasividade Neoplásica , Metástase Neoplásica , Regiões Promotoras Genéticas , Fator de Transcrição Sp1/metabolismo
11.
J Biomed Res ; 33(3): 164-172, 2019 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-29109331

RESUMO

Tumor necrosis factor alpha (TNF-α) is a cytokine that can potently stimulate the synthesis of a range of pro-inflammatory mediators in macrophages. The underlying epigenetic mechanism, however, is underexplored. Here we report that the transcriptional modulator megakaryocytic leukemia 1 (MKL1) is associated with a histone H3K4 methyltransferase activity. Re-ChIP assay suggests that MKL1 interacts with and recruits WDR5, a component of the COMPASS complex responsible for H3K4 methylation, to the promoter regions of pro-inflammatory genes in macrophages treated with TNF-α. WDR5 enhances the ability of MKL1 to stimulate the promoter activities of pro-inflammatory genes. In contrast, silencing of WDR5 attenuates TNF-α induced production of pro-inflammatory mediators and erases the H3K4 methylation from the gene promoters. Of interest, the chromatin remodeling protein BRG1 also plays an essential role in maintaining H3K4 methylation on MKL1 target promoters by interacting with WDR5. MKL1 knockdown disrupts the interaction between BRG1 and WDR5. Together, our data illustrate a role for MKL1 in moderating the crosstalk between BRG1 and WDR5 to activate TNF-α induced pro-inflammatory transcription in macrophages.

12.
Circulation ; 138(24): 2820-2836, 2018 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-30018168

RESUMO

BACKGROUND: Excessive accumulation of reactive oxygen species (ROS), catalyzed by the NADPH oxidases (NOX), is involved in the pathogenesis of ischemia-reperfusion (IR) injury. The underlying epigenetic mechanism remains elusive. METHODS: We evaluated the potential role of megakaryocytic leukemia 1 (MKL1), as a bridge linking epigenetic activation of NOX to ROS production and cardiac ischemia-reperfusion injury. RESULTS: Following IR injury, MKL1-deficient (knockout) mice exhibited smaller myocardial infarction along with improved heart function compared with wild-type littermates. Similarly, pharmaceutical inhibition of MKL1 with CCG-1423 also attenuated myocardial infarction and improved heart function in mice. Amelioration of IR injury as a result of MKL1 deletion or inhibition was accompanied by reduced ROS in vivo and in vitro. In response to IR, MKL1 levels were specifically elevated in macrophages, but not in cardiomyocytes, in the heart. Of note, macrophage-specific deletion (MϕcKO), instead of cardiomyocyte-restricted ablation (CMcKO), of MKL1 in mice led to similar improvements of infarct size, heart function, and myocardial ROS generation. Reporter assay and chromatin immunoprecipitation assay revealed that MKL1 directly bound to the promoters of NOX genes to activate NOX transcription. Mechanistically, MKL1 recruited the histone acetyltransferase MOF (male absent on the first) to modify the chromatin structure surrounding the NOX promoters. Knockdown of MOF in macrophages blocked hypoxia/reoxygenation-induced NOX transactivation and ROS accumulation. Of importance, pharmaceutical inhibition of MOF with MG149 significantly downregulated NOX1/NOX4 expression, dampened ROS production, and normalized myocardial function in mice exposed to IR injury. Finally, administration of a specific NOX1/4 inhibitor GKT137831 dampened ROS generation and rescued heart function after IR in mice. CONCLUSIONS: Our data delineate an MKL1-MOF-NOX axis in macrophages that contributes to IR injury, and as such we have provided novel therapeutic targets in the treatment of ischemic heart disease.


Assuntos
Macrófagos/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , NADPH Oxidases/metabolismo , Transativadores/genética , Anilidas/farmacologia , Animais , Benzamidas/farmacologia , Células da Medula Óssea/citologia , Cromatina/química , Cromatina/metabolismo , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Histonas/metabolismo , Macrófagos/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Traumatismo por Reperfusão Miocárdica/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , NADPH Oxidases/genética , Regiões Promotoras Genéticas , Espécies Reativas de Oxigênio/metabolismo , Salicilatos/farmacologia , Transativadores/antagonistas & inibidores
13.
Artigo em Inglês | MEDLINE | ID: mdl-30056131

RESUMO

Excessive reactive oxygen species (ROS) causes irreparable damages to cells and commit cells to programmed cell death or apoptosis. A panel of well-documented pro-apoptotic genes, including p53 apoptosis effector related to PMP-22 (PERP), are up-regulated and collectively mediate ROS induced apoptosis. The epigenetic mechanism whereby ROS stimulates PERP transcription, however, lacks in-depth characterization. Here we report that the transcriptional modulator megakaryocytic leukemia 1 (MKL1) is activated by H2O2 treatment in skeletal muscle cells (C2C12). Small interfering RNA (siRNA) mediated silencing or small-molecule compound (CCG-1423) mediated inhibition of MKL1 attenuated H2O2 induced apoptosis of C2C12 cells. Over-expression of MKL1 potentiated trans-activation of PERP whereas MKL1 ablation/inhibition abrogated the induction of PERP by H2O2 in C2C12 cells. Mechanistically, MKL1 interacted with and was recruited to the PERP promoter by the transcription factor E2F1. Once bound to the PERP promoter, MKL1 engaged the histone demethylase KDM3A to modulate the chromatin structure surrounding the PERP promoter thereby leading to PERP trans-activation. Depletion of either E2F1 or KDM3A blocked the induction of PERP by H2O2. In conclusion, our data illustrate a novel epigenetic pathway that links PERP transcription to ROS-induced apoptosis in skeletal muscle cells.

14.
Biol Pharm Bull ; 41(4): 530-535, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29607925

RESUMO

All-trans retinoic acid (ATRA) has been proved to protect liver from ischemia/reperfusion (IR) injury, however, its mechanism is still unclear. This study is to investigate the mechanism of effect of ATRA on innate immunity in mice liver IR injury. Before operation, mice were gavaged by ATRA at 15 mg/kg/d for two weeks, and then the liver was underwent 70% ischemia (90 min) and reperfusion (6 h). Liver function was assessed by serum alanine aminotransferase (sALT), serum aspartate aminotransferase (sAST). Real-time PCR and Western blot were to detect the level of mRNA and protein. In vitro, RAW264.7 macrophages were treatment with ATRA (1 µM) or LE540 (5 µM, a retinoic acid receptor α (RARα) receptor antagonist) before lipopolysaccharide (100 ng/mL) stimulation. In vivo, ATRA protected the liver from IR injury by improving hepatocellular function (sALT and sAST), decreasing cell apoptosis and inhibiting inflammatory response (i.e., the level of toll-like receptor 4, transcription factor nuclear factor-κBp65, interleukin (IL)-1ß, IL-6, and tumor necrosis factor-α). When RARα was blocked by LE540 in RAW264.7 macrophages, the inflammatory cytokines were enhancing, along with a decline of Akt phosphorylation but Forkhead box o (Foxo) 1, compared with the ATRA group. In summary, ATRA regulates in part the innate immunity to protect liver from IR injury by RARα/Akt/Foxo1 pathway.


Assuntos
Proteína Forkhead Box O1/metabolismo , Imunidade Inata/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Traumatismo por Reperfusão/imunologia , Receptor alfa de Ácido Retinoico/metabolismo , Tretinoína/farmacologia , Animais , Apoptose/efeitos dos fármacos , Citocinas/genética , Fígado/efeitos dos fármacos , Fígado/imunologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Substâncias Protetoras/uso terapêutico , Células RAW 264.7 , RNA Mensageiro/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo , Fator de Transcrição RelA/metabolismo , Tretinoína/uso terapêutico
15.
Oncol Lett ; 15(2): 2373-2379, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29434946

RESUMO

Dose distribution was calculated and analyzed on the basis of 16-bit computed tomography (CT) images in order to investigate the effect of scanning conditions on CT for metal implants. Stainless steel and titanium rods were inserted into a phantom, and CT images were obtained by scanning the phantom under various scanning conditions: i) Fixed tube current of 230 mA and tube voltages of 100, 120, and 140 kV; and ii) fixed tube voltage of 120 kV and tube currents of 180, 230, and 280 mA. The CT value of the metal rod was examined and corrected. In a Varian treatment planning system, a treatment plan was designed on the basis of the CT images obtained under the set scanning conditions. The dose distributions in the phantom were then calculated and compared. The CT value of the metal area slightly changed upon tube current alteration. The dose distribution in the phantom was also similar. The maximum CT values of the stainless steel rod were 14,568, 14,127 and 13,295 HU when the tube voltages were modified to 100, 120, and 140 kV, respectively. The corresponding CT values of the titanium rod were 9,420, 8,140 and 7,310 HU. The dose distribution of the radiotherapy plan changed significantly as the tube voltage varied. Compared with the reference dose, the respective maximum dose differences of the stainless steel and titanium rods in the phantom were 5.70, and 6.62% when the tube voltage varied. The changes in tube currents resulted in a maximum dose error of <1% for stainless steel and titanium. In CT imaging, changes in tube voltages can significantly alter the CT values of metal implants. Thus, this can lead to large errors in radiotherapy dose distributions.

16.
Biochim Biophys Acta Gene Regul Mech ; 1860(8): 839-847, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28571745

RESUMO

Inflammation is considered a fundamental host defense mechanism and, when aberrantly activated, contributes to a host of human diseases. Previously we have reported that the transcriptional regulator megakaryocytic leukemia 1 (MKL1) plays a role programming cellular inflammatory response by modulating NF-κB activity. Here we report that MKL1 was acetylated in vivo and pro-inflammatory stimuli (TNF-α and LPS) augmented MKL1 acetylation accompanying increased MKL1 binding to NF-κB target promoters. Further analysis revealed that the lysine acetyltransferase PCAF mediated MKL1 acetylation: TNF-α and LPS promoted the interaction between MKL1 and PCAF whereas depletion of PCAF abrogated the induction of MKL1 acetylation by TNF-α and LPS. Acetylation of MKL1 was necessary for MKL1 to activate the transcription of pro-inflammatory genes because mutation of four conserved lysine residues in MKL1 attenuated its capacity as a trans-activator of NF-κB target genes. Mechanistically, MKL1 acetylation served to promote MKL1 nuclear enrichment, to enhance the MKL1-NF-κB interaction, and to stabilize the binding of MKL1 on target promoters. In conclusion, our data unveil an important pathway that contributes to the transcriptional regulation of inflammatory response.


Assuntos
Inflamação/genética , Transativadores/genética , Transcrição Gênica/genética , Fatores de Transcrição de p300-CBP/genética , Acetilação , Linhagem Celular , Regulação da Expressão Gênica/genética , Células HEK293 , Humanos , Lisina/genética , NF-kappa B/genética , Regiões Promotoras Genéticas/genética , Ligação Proteica/genética , Fator de Necrose Tumoral alfa/genética
17.
Biochem Biophys Res Commun ; 487(3): 500-508, 2017 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-28385531

RESUMO

Responding to pro-metastatic cues such as low oxygen tension, cancer cells develop several different strategies to facilitate migration and invasion. During this process, expression levels of matrix metalloproteinases (MMPs) are up-regulated so that cancer cells can more easily enter or exit the circulation. In this report we show that message levels of the transcriptional modulator MKL1 were elevated in malignant forms of ovarian cancer tissues in humans when compared to more benign forms accompanying a similar change in MMP2 expression. MKL1 silencing blocked hypoxia-induced migration and invasion of ovarian cancer cells (SKOV-3) in vitro. Over-expression of MKL1 activated while MKL1 depletion repressed MMP2 transcription in SKOV-3 cells. MKL1 was recruited to the MMP2 promoter by NF-κB in response to hypoxia. Mechanistically, MKL1 recruited a histone methyltransferase, SET1, and a chromatin remodeling protein, BRG1, and coordinated their interaction to alter the chromatin structure surrounding the MMP2 promoter leading to transcriptional activation. Both BRG1 and SET1 were essential for hypoxia-induced MMP2 trans-activation. Finally, expression levels of SET1 and BRG1 were positively correlated with ovarian cancer malignancies in humans. Together, our data suggest that MKL1 promotes ovarian cancer cell migration and invasion by epigenetically activating MMP2 transcription.


Assuntos
Movimento Celular , Epigênese Genética , Metaloproteinase 2 da Matriz/genética , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Transativadores/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Metaloproteinase 2 da Matriz/metabolismo , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Neoplasias Ovarianas/metabolismo , Transativadores/genética
18.
Sci Rep ; 7(1): 191, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28298643

RESUMO

Macrophage-dependent inflammatory response is considered a pivotal biological process that contributes to a host of diseases when aberrantly activated. The underlying epigenetic mechanism is not completely understood. We report here that MKL1 was both sufficient and necessary for p65-dependent pro-inflammatory transcriptional program in immortalized macrophages, in primary human and mouse macrophages, and in an animal model of systemic inflammation (endotoxic shock). Extensive chromatin immunoprecipitation (ChIP) profiling and ChIP-seq analyses revealed that MKL1 deficiency erased key histone modifications synonymous with transactivation on p65 target promoters. Specifically, MKL1 defined histone H3K4 trimethylation landscape for NF-κB dependent transcription. MKL1 recruited an H3K4 trimethyltransferase SET1 to the promoter regions of p65 target genes. There, our work has identified a novel modifier of p65-dependent pro-inflammatory transcription, which may serve as potential therapeutic targets in treating inflammation related diseases.


Assuntos
Histonas/metabolismo , Lipopolissacarídeos/administração & dosagem , Choque Séptico/genética , Transativadores/genética , Fator de Transcrição RelA/metabolismo , Animais , Células Cultivadas , Imunoprecipitação da Cromatina , Modelos Animais de Doenças , Epigênese Genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Macrófagos Peritoneais/citologia , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/metabolismo , Metilação , Camundongos , Choque Séptico/induzido quimicamente , Choque Séptico/metabolismo , Células THP-1 , Transativadores/metabolismo
19.
Hepatology ; 65(6): 1904-1919, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28244120

RESUMO

Uncontrolled inflammatory response highlights the central theme of nonalcoholic steatohepatitis (NASH), a growing global pandemic. Hepatocytes and macrophages represent two major sources of hepatic inflammation during NASH pathogenesis, contributing to excessive synthesis of proinflammatory mediators. The epigenetic mechanism that accounts for the activation of hepatocytes and macrophages in this process remains obscure. Here, we report that compared to wild-type littermates, mice with a deficiency in the histone H3K9 methyltransferase suppressor of variegation 39 homolog 2 (Suv39h2, knockout) exhibited a less severe form of NASH induced by feeding with a high-fat, high-carbohydrate diet. Pro-NASH stimuli increased Suv39h2 expression in cell culture, in mice, and in human livers. In hepatocytes, Suv39h2 bound to the Sirt1 gene promoter and repressed Sirt1 transcription. Suv39h2 deficiency normalized Sirt1 expression, allowing nuclear factor kappa B/p65 to become hypoacetylated and thus dampening nuclear factor kappa B-dependent transcription of proinflammatory mediators. In macrophages, Suv39h2-mediated repression of peroxisome proliferator-activated receptor gamma transcription favored a proinflammatory M1 phenotype over an anti-inflammatory M2 phenotype, thereby elevating hepatic inflammation. CONCLUSION: Suv39h2 plays a pivotal role in the regulation of inflammatory response in hepatocytes and macrophages, contributing to NASH pathogenesis. (Hepatology 2017;65:1904-1919).


Assuntos
Dieta Hiperlipídica , Histona-Lisina N-Metiltransferase/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Sirtuína 1/metabolismo , Análise de Variância , Animais , Biomarcadores/metabolismo , Biópsia por Agulha , Western Blotting , Carcinoma Hepatocelular/parasitologia , Carcinoma Hepatocelular/fisiopatologia , Células Cultivadas , Modelos Animais de Doenças , Progressão da Doença , Citometria de Fluxo , Hepatócitos/metabolismo , Histona Metiltransferases , Humanos , Imuno-Histoquímica , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Distribuição Aleatória , Reação em Cadeia da Polimerase em Tempo Real/métodos , Valores de Referência
20.
Arterioscler Thromb Vasc Biol ; 37(4): 675-684, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28153879

RESUMO

OBJECTIVE: Phenotypic modulation of vascular smooth muscle cells represents a hallmark event in vascular injury. The underlying mechanism is not completely sorted out. We investigated the involvement of angiogenic factor with G patch and FHA domains 1 (Aggf1) in vascular injury focusing on the transcriptional regulation of vascular smooth muscle cell signature genes. APPROACH AND RESULTS: We report here that Aggf1 expression was downregulated in several different cell models of phenotypic modulation in vitro and in the vessels after carotid artery ligation in mice. Adenovirus-mediated Aggf1 overexpression dampened vascular injury and normalized vascular smooth muscle cell signature gene expression. Mechanistically, Aggf1 interacted with myocardin and was imperative for the formation of a serum response factor-myocardin complex on gene promoters. In response to injurious stimuli, kruppel-like factor 4 was recruited to the Aggf1 promoter and enlisted histone deacetylase 11 to repress Aggf1 transcription. In accordance, depletion of kruppel-like factor 4 or histone deacetylase 11 restored Aggf1 expression and abrogated vascular smooth muscle cell phenotypic modulation. Finally, treatment of a histone deacetylase 11 inhibitor attenuated vascular injury in mice. CONCLUSIONS: Therefore, we have unveiled a previously unrecognized role for Aggf1 in regulating vascular injury.


Assuntos
Proteínas Angiogênicas/metabolismo , Lesões das Artérias Carótidas/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Proteínas Angiogênicas/genética , Animais , Lesões das Artérias Carótidas/genética , Lesões das Artérias Carótidas/patologia , Lesões das Artérias Carótidas/prevenção & controle , Linhagem Celular , Modelos Animais de Doenças , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Humanos , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Masculino , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/patologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fenótipo , Interferência de RNA , Ratos Sprague-Dawley , Fator de Resposta Sérica/genética , Fator de Resposta Sérica/metabolismo , Transdução de Sinais , Transativadores/genética , Transativadores/metabolismo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA