Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
1.
Environ Toxicol ; 39(6): 3548-3562, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38477013

RESUMO

Tumor cell metastasis is the key cause of death in patients with nasopharyngeal carcinoma (NPC). MiR-2110 was cloned and identified in Epstein-Barr virus (EBV)-positive NPC, but its role is unclear in NPC. In this study, we investigated the effect of miR-2110 on NPC metastasis and its related molecular basis. In addition, we also explored whether miR-2110 can be regulated by cinobufotalin (CB) and participate in the inhibition of CB on NPC metastasis. Bioinformatics, RT-PCR, and in situ hybridization were used to observe the expression of miR-2110 in NPC tissues and cells. Scratch, Boyden, and tail vein metastasis model of nude mouse were used to detect the effect of miR-2110 on NPC metastasis. Western blot, Co-IP, luciferase activity, colocalization of micro confocal and ubiquitination assays were used to identify the molecular mechanism of miR-2110 affecting NPC metastasis. Finally, miR-2110 induced by CB participates in CB-stimulated inhibition of NPC metastasis was explored. The data showed that increased miR-2110 significantly suppresses NPC cell migration, invasion, and metastasis. Suppressing miR-2110 markedly restored NPC cell migration and invasion. Mechanistically, miR-2110 directly targeted FGFR1 and reduced its protein expression. Decreased FGFR1 attenuated its recruitment of NEDD4, which downregulated NEDD4-induced phosphatase and tensin homolog (PTEN) ubiquitination and degradation and further increased PTEN protein stability, thereby inactivating PI3K/AKT-stimulated epithelial-mesenchymal transition signaling and ultimately suppressing NPC metastasis. Interestingly, CB, a potential new inhibitory drug for NPC metastasis, significantly induced miR-2110 expression by suppressing PI3K/AKT/c-Jun-mediated transcription inhibition. Suppression of miR-2110 significantly restored cell migration and invasion in CB-treated NPC cells. Finally, a clinical sample assay indicated that reduced miR-2110 was negatively correlated with NPC lymph node metastasis and positively related to NPC patient survival prognosis. In summary, miR-2110 is a metastatic suppressor involving in CB-induced suppression of NPC metastasis.


Assuntos
Bufanolídeos , Movimento Celular , Camundongos Nus , MicroRNAs , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , PTEN Fosfo-Hidrolase , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos , Ubiquitinação , PTEN Fosfo-Hidrolase/metabolismo , PTEN Fosfo-Hidrolase/genética , Carcinoma Nasofaríngeo/patologia , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Humanos , Animais , Linhagem Celular Tumoral , Neoplasias Nasofaríngeas/patologia , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/tratamento farmacológico , Neoplasias Nasofaríngeas/metabolismo , Ubiquitinação/efeitos dos fármacos , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Bufanolídeos/farmacologia , Movimento Celular/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Masculino , Metástase Neoplásica , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos
2.
Biomed Pharmacother ; 171: 116118, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38181716

RESUMO

The myosin heavy chain 9 (MYH9) gene encodes the heavy chain of non-muscle myosin IIA (NMIIA), which belongs to the myosin II subfamily of actin-based molecular motors. Previous studies have demonstrated that abnormal expression and mutations of MYH9 were correlated with MYH9-related diseases and tumors. Furthermore, earlier investigations identified MYH9 as a tumor suppressor. However, subsequent research revealed that MYH9 promoted tumorigenesis, progression and chemoradiotherapy resistance. Note-worthily, MYH9 has also been linked to viral infections, like severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), Epstein-Barr virus, and hepatitis B virus, as a receptor or co-receptor. In addition, MYH9 promotes the development of hepatocellular carcinoma by interacting with the hepatitis B virus-encoding X protein. Finally, various findings highlighted the role of MYH9 in the development of these illnesses, especially in tumors. This review summarizes the involvement of the MYH9-regulated signaling network in tumors and virus-related diseases and presents possible drug interventions on MYH9, providing insights for the use of MYH9 as a therapeutic target for tumors and virus-mediated diseases.


Assuntos
Infecções por Vírus Epstein-Barr , Neoplasias , Humanos , Herpesvirus Humano 4/metabolismo , Mutação , Actinas/genética , Cadeias Pesadas de Miosina/genética
3.
Am J Cardiol ; 211: 343-349, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38141461

RESUMO

Transcatheter aortic valve implantation (TAVI) has become a therapeutic treatment for severe symptomatic patients with aortic stenosis. This study aimed to test a novel transcatheter aortic self-expandable bioprosthesis-the ScienCrown system (Lepu Medtech Inc., Beijing, China)-and evaluate the safety of the new device during TAVI. ScienCrown aortic valve implantation was performed on 10 patients. Clinical assessment was performed at baseline, post procedure, and after 1 year. Clinical outcomes and adverse events were assessed according to Valvular Academic Research Consortium-3 criteria. The mean age was 75.30 ± 4.78 years with a mean Society of Thoracic Surgeons score of 4.64 ± 3.23%. Device success was achieved in all patients (80% transfemoral, 20% transapical). After 1 year, there were no deaths, disabling strokes, myocardial infarctions, conversions to surgery, or major procedure-related complications. New pacemaker implantation was required in one patient (10%). ScienCrown implantation resulted in a reduction in mean valve gradient (63.00 ± 18.84 to 9.67 ± 4.97 mm Hg, p <0.001) and an increase in effective orifice area (0.57 ± 0.20 to 2.57 ± 0.59 cm2, p <0.001) at 1 year. Paravalvular leak was absent in 9 patients (90%), and there was a trace in one patient (10%). All patients were in New York Heart Association class I to II at a mean follow-up of 1 year. The experience showed that ScienCrown transcatheter aortic valve system was safely and successfully implanted for treatment of severe symptomatic aortic stenosis. The newer-generation device affords a stable implantation while providing optimal hemodynamic performance.


Assuntos
Estenose da Valva Aórtica , Próteses Valvulares Cardíacas , Substituição da Valva Aórtica Transcateter , Humanos , Idoso , Idoso de 80 Anos ou mais , Substituição da Valva Aórtica Transcateter/métodos , Resultado do Tratamento , Valva Aórtica/cirurgia , Estenose da Valva Aórtica/cirurgia , Estenose da Valva Aórtica/etiologia , Desenho de Prótese
4.
Environ Toxicol ; 39(4): 2150-2165, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38108618

RESUMO

Pyrogallol (1,2,3-trihydroxybenzene), a polyphenolic natural compound, has attracted considerable attention with regard to its potential anticancer activity. However, further study is needed to elucidate the underlying mechanism related to the antiNSCLC activity of pyrogallol and provide a comprehensive theoretical basis for better clinical utilization of pyrogallol. Our current study aims to investigate the effects and potential underlying mechanisms of pyrogallol on the inhibition of NSCLC growth. Our results showed that pyrogallol treatment induced cell cycle arrest at the G2/M phase and apoptosis in two different NSCLC cell lines. Mechanistically, we found that the induction of cell cycle arrest in NSCLC cells at the G2/M phase by pyrogallol was due to the upregulation of p21 in a p53-dependent manner. And blockade of p53 and p21 effectively abolished the cell cycle arrest at the G2/M phase. Meanwhile, p53 inhibition has been found to abrogate the pyrogallol-induced apoptosis of the two NSCLC cells. Moreover, we revealed that the inhibitory effects of pyrogallol on ß-catenin signaling resulted from autophagy initiation depending on p53 activation, accompanied by an increase in p62/SQSTM1 expression, thus p62 subsequently interacting with ubiquitinated ß-catenin and facilitating autophagic destruction of ß-catenin. Furthermore, in vivo experiments demonstrated that pyrogallol exerted growth inhibition on NSCLC with low toxicity through the same molecular mechanism as observed in vitro. Our findings could contribute to the understanding of the mechanism by which pyrogallol negatively regulates NSCLC growth, which could be effective in treating NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Pirogalol/farmacologia , Pirogalol/uso terapêutico , Regulação para Cima , Proteína Supressora de Tumor p53/metabolismo , Proteína Sequestossoma-1/genética , Proteína Sequestossoma-1/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , beta Catenina/metabolismo , Linhagem Celular Tumoral , Apoptose , Proliferação de Células
5.
MedComm (2020) ; 4(5): e387, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37799808

RESUMO

Currently, checkpoint inhibitor-based immunotherapy has emerged as prevailing treatment modality for diverse cancers. However, immunotherapy as a first-line therapy has not consistently yielded durable responses. Moreover, the risk of immune-related adverse events increases with combination regimens. Thus, the development of predictive biomarkers is needed to optimize individuals benefit, minimize risk of toxicities, and guide combination approaches. The greatest focus has been on tumor programmed cell death-ligand 1 (PD-L1), microsatellite instability (MSI), and tumor mutational burden (TMB). However, there remains a subject of debate due to thresholds variability and significant heterogeneity. Major unmet challenges in immunotherapy are the discovery and validation of predictive biomarkers. Here, we show the status of tumor PD-L1, MSI, TMB, and emerging data on novel biomarker strategies with oncogenic signaling and epigenetic regulation. Considering the exploration of peripheral and intestinal immunity has served as noninvasive alternative in predicting immunotherapy, this review also summarizes current data in systemic immunity, encompassing solute PD-L1 and TMB, circulating tumor DNA and infiltrating lymphocytes, routine emerging inflammatory markers and cytokines, as well as gut microbiota. This review provides up-to-date information on the evolving field of currently available biomarkers in predicting immunotherapy. Future exploration of novel biomarkers is warranted.

6.
Biomolecules ; 13(9)2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37759810

RESUMO

OBJECTIVE: Estrogen is indispensable in health and disease and mainly functions through its receptors. The protection of the cardiovascular system by estrogen and its receptors has been recognized for decades. Numerous studies with a focus on estrogen and its receptor system have been conducted to elucidate the underlying mechanism. Although nuclear estrogen receptors, including estrogen receptor-α and estrogen receptor-ß, have been shown to be classical receptors that mediate genomic effects, studies now show that GPER mainly mediates rapid signaling events as well as transcriptional regulation via binding to estrogen as a membrane receptor. With the discovery of selective synthetic ligands for GPER and the utilization of GPER knockout mice, significant progress has been made in understanding the function of GPER. In this review, the tissue and cellular localizations, endogenous and exogenous ligands, and signaling pathways of GPER are systematically summarized in diverse physiological and diseased conditions. This article further emphasizes the role of GPER in vascular pathology and physiology, focusing on the latest research progress and evidence of GPER as a promising therapeutic target in hypertension, pulmonary hypertension, and atherosclerosis. Thus, selective regulation of GPER by its agonists and antagonists have the potential to be used in clinical practice for treating such diseases.


Assuntos
Estrogênios , Receptores de Estrogênio , Animais , Camundongos , Proteínas de Ligação ao GTP , Camundongos Knockout , Receptores de Estrogênio/genética , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais
7.
MedComm (2020) ; 4(5): e367, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37750089

RESUMO

There are five fibroblast growth factor receptors (FGFRs), namely, FGFR1-FGFR5. When FGFR binds to its ligand, namely, fibroblast growth factor (FGF), it dimerizes and autophosphorylates, thereby activating several key downstream pathways that play an important role in normal physiology, such as the Ras/Raf/mitogen-activated protein kinase kinase/extracellular signal-regulated kinase, phosphoinositide 3-kinase (PI3K)/AKT, phospholipase C gamma/diacylglycerol/protein kinase c, and signal transducer and activator of transcription pathways. Furthermore, as an oncogene, FGFR genetic alterations were found in 7.1% of tumors, and these alterations include gene amplification, gene mutations, gene fusions or rearrangements. Therefore, FGFR amplification, mutations, rearrangements, or fusions are considered as potential biomarkers of FGFR therapeutic response for tyrosine kinase inhibitors (TKIs). However, it is worth noting that with increased use, resistance to TKIs inevitably develops, such as the well-known gatekeeper mutations. Thus, overcoming the development of drug resistance becomes a serious problem. This review mainly outlines the FGFR family functions, related pathways, and therapeutic agents in tumors with the aim of obtaining better outcomes for cancer patients with FGFR changes. The information provided in this review may provide additional therapeutic ideas for tumor patients with FGFR abnormalities.

8.
Cancer Cell Int ; 23(1): 220, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37770914

RESUMO

Myosin heavy chain 9 (MYH9) plays an important role in a number of diseases. Nevertheless, the function of MYH9 in glioma is unclear. The present research aimed to investigate the role of MYH9 in glioma and determine whether MYH9 is involved in the temozolomide chemoresistance of glioma cells. Our results showed that MYH9 increased the proliferation and temozolomide resistance of glioma cells. The mechanistic experiments showed that the binding of MYH9 to NAP1L1, a potential promoter of tumor proliferation, inhibited the ubiquitination and degradation of NAP1L1 by recruiting USP14. Upregulation of NAP1L1 increased its binding with c-Myc and activated c-Myc, which induced the expression of CCND1/CDK4, promoting glioma cell temozolomide resistance and proliferation. Additionally, we found that MYH9 upregulation was strongly related to patient survival and is therefore a negative factor for patients with glioma. Altogether, our results show that MYH9 plays a role in glioma progression by regulating NAP1L1 deubiquitination. Thus, targeting MYH9 is a potential therapeutic strategy for the clinical treatment of glioma in the future.

9.
Cancer Lett ; 565: 216225, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37182638

RESUMO

CCDC (coiled-coil domain-containing) is a coiled helix domain that exists in natural proteins. There are about 180 CCDC family genes, encoding proteins that are involved in intercellular transmembrane signal transduction and genetic signal transcription, among other functions. Alterations in expression, mutation, and DNA promoter methylation of CCDC family genes have been shown to be associated with the pathogenesis of many diseases, including primary ciliary dyskinesia, infertility, and tumors. In recent studies, CCDC family genes have been found to be involved in regulation of growth, invasion, metastasis, chemosensitivity, and other biological behaviors of malignant tumor cells in various cancer types, including nasopharyngeal carcinoma, lung cancer, colorectal cancer, and thyroid cancer. In this review, we summarize the involvement of CCDC family genes in tumor pathogenesis and the relevant upstream and downstream molecular mechanisms. In addition, we summarize the potential of CCDC family genes as tumor therapy targets. The findings discussed here help us to further understand the role and the therapeutic applications of CCDC family genes in tumors.


Assuntos
Neoplasias Pulmonares , Neoplasias da Glândula Tireoide , Humanos , Neoplasias Pulmonares/metabolismo , Transdução de Sinais , Neoplasias da Glândula Tireoide/genética , Metilação de DNA , Mutação
10.
Adv Sci (Weinh) ; 10(14): e2203423, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36929633

RESUMO

The poor prognosis of serous ovarian cancer (SOC) is due to its high invasive capacity and cisplatin resistance of SOC cells, whereas the molecular mechanisms remain poorly understood. In the present study, the expression and function of non-muscle myosin heavy chain IIB (MYH10) in SOC are identified by immunohistochemistry, in vitro, and in vivo studies, respectively. The mechanism of MYH10 is demonstrated by co-immunoprecipitation, GST pull-down, confocal laser assays, and so on. The results show that the knockdown of MYH10 suppressed SOC cell proliferation, migration, invasion, metastasis, and cisplatin resistance both in vivo and in vitro. Further studies confirm that the MYH10 protein functional domain combines with non-muscle myosin heavy chain IIA (MYH9) to recruit the deubiquitinating enzyme Ubiquitin-specific proteases 45 and deubiquitinates snail to inhibit snail degradation, eventually promoting tumorigenesis, progression, and cisplatin resistance in SOC. In clinical samples, MYH10 expression is significantly elevated in SOC samples compared to the paratumor samples. And the expression of MYH10 is positively correlated with MYH9 expression. MYH10+/MYH9+ co-expression is an independent prognostic factor for predicting SOC patient survival. These findings uncover a key role of the MYH10-MYH9-snail axis in SOC carcinogenesis, progression, and cisplatin resistance, and provide potential novel therapeutic targets for SOC intervention.


Assuntos
Cisplatino , Neoplasias Ovarianas , Feminino , Humanos , Proliferação de Células/genética , Transformação Celular Neoplásica , Cisplatino/farmacologia , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética
11.
Respir Res ; 24(1): 64, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36849947

RESUMO

BACKGROUND: Immune checkpoint inhibitors (ICIs) are regarded as the most promising treatment for advanced-stage non-small cell lung cancer (aNSCLC). Unfortunately, there has been no unified accuracy biomarkers and systematic model specifically identified for prognostic and severe immune-related adverse events (irAEs). Our goal was to discover new biomarkers and develop a publicly accessible method of identifying patients who may maximize benefit from ICIs. METHODS: This retrospective study enrolled 138 aNSCLC patients receiving ICIs treatment. Progression-free survival (PFS) and severe irAEs were end-points. Data of demographic features, severe irAEs, and peripheral blood inflammatory-nutritional and immune indices before and after 1 or 2 cycles of ICIs were collected. Independent factors were selected by least absolute shrinkage and selection operator (LASSO) combined with multivariate analysis, and incorporated into nomogram construction. Internal validation was performed by applying area under curve (AUC), calibration plots, and decision curve. RESULTS: Three nomograms with great predictive accuracy and discriminatory power were constructed in this study. Among them, two nomograms based on combined inflammatory-nutritional biomarkers were constructed for PFS (1 year-PFS and 2 year-PFS) and severe irAEs respectively, and one nomogram was constructed for 1 year-PFS based on immune indices. ESCLL nomogram (based on ECOG PS, preSII, changeCAR, changeLYM and postLDH) was constructed to assess PFS (1-, 2-year-AUC = 0.893 [95% CI 0.837-0.950], 0.828 [95% CI 0.721-0.935]). AdNLA nomogram (based on age, change-dNLR, changeLMR and postALI) was constructed to predict the risk of severe irAEs (AUC = 0.762 [95% CI 0.670-0.854]). NKT-B nomogram (based on change-CD3+CD56+CD16+NKT-like cells and change-B cells) was constructed to assess PFS (1-year-AUC = 0.872 [95% CI 0.764-0.965]). Although immune indices could not be modeled for severe irAEs prediction due to limited data, we were the first to find CD3+CD56+CD16+NKT-like cells were not only correlated with PFS but also associated with severe irAEs, which have not been reported in the study of aNSCLC-ICIs. Furthermore, our study also discovered higher change-CD4+/CD8+ ratio was significantly associated with severe irAEs. CONCLUSIONS: These three new nomograms proceeded from non-invasive and straightforward peripheral blood data may be useful for decisions-making. CD3+CD56+CD16+NKT-like cells were first discovered to be an important biomarker for treatment and severe irAEs, and play a vital role in distinguishing the therapy response and serious toxicity of ICIs.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Prognóstico , Nomogramas , Inibidores de Checkpoint Imunológico/efeitos adversos , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Estudos Retrospectivos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/tratamento farmacológico , Biomarcadores
12.
J Exp Clin Cancer Res ; 42(1): 12, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36627670

RESUMO

BACKGROUND: LINC00173 had been reported as a cisplatin (cis-diamminedichloroplatinum, DDP) chemotherapy-resistant inducer in small-cell lung cancer (SCLC) and lung squamous cell carcinoma (LUSC). This study aimed to display reverse data for LINC00173 as a DDP chemosensitivity-inducing factor in lung adenocarcinoma (LUAD). METHODS: LINC00173 was screened from the Gene Expression Omnibus database (GSE43493). The expression level of LINC00173 in LUAD tissues and cell lines was detected using in situ hybridization and quantitative reverse transcription-polymerase chain reaction. Colony formation, cell viability, half-maximal inhibitory concentration, flow cytometry, and xenograft mouse model were used to evaluate the role of LINC00173 in the chemosensitivity of LUAD to DDP. The mechanism of LINC00173 in DDP resistance by mediating miR-1275/PROCA1/ZFP36L2 axis to impair BCL2 mRNA stability was applied, and co-immunoprecipitation, chromatin immunoprecipitation, RNA antisense purification, RNA immunoprecipitation, and luciferase reporter assays were performed. RESULTS: LINC00173 downregulation in patients with DDP-resistant LUAD was correlated with poor prognosis. Further, LINC00173 expression was significantly reduced in DDP-resistant LUAD cells and DDP-treated human LUAD tissues. Suppressed LINC00173 expression in LUAD cells enhanced DDP chemoresistance in vivo and in vitro, while restored LINC00173 expression in DDP-resistant LUAD cells markedly regained chemosensitivity to DDP. Mechanistically, DDP-resistant LUAD cells activated PI3K/AKT signal and further elevated the c-Myc expression. The c-Myc, as an oncogenic transcriptional factor, bound to the promoter of LINC00173 and suppressed its expression. The reduced LINC00173 expression attenuated the adsorption of oncogenic miR-1275, downregulating the expression of miR-1275 target gene PROCA1. PROCA1 played a potential tumor-suppressive role inducing cell apoptosis and DDP chemosensitivity via recruiting ZFP36L2 to bind to the 3' untranslated region of BCL2, reducing the stability of BCL2 mRNA and thus activating the apoptotic signal. CONCLUSIONS: This study demonstrated a novel and critical role of LINC00173. It was transcriptionally repressed by DDP-activated PI3K/AKT/c-Myc signal in LUAD, promoting DDP-acquired chemotherapeutic resistance by regulating miR-1275 to suppress PROCA1/ZFP36L2-induced BCL2 degradation, which led to apoptotic signal reduction. These data were not consistent with the previously described role of LINC00173 in SCLC or LUSC, which suggested that LINC00173 could play fine-tuned DDP resistance roles in different pathological subtypes of lung cancer. This study demonstrated that the diminished expression of LINC00173 might serve as an indicator of DDP-acquired resistance in LUAD.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares , MicroRNAs , RNA Longo não Codificante , Animais , Humanos , Camundongos , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Proliferação de Células , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Regulação para Baixo , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , MicroRNAs/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Estabilidade de RNA
13.
MedComm (2020) ; 3(4): e185, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36448053

RESUMO

ENKUR was shown as a suppressor in some tumors. However, the biological role of ENKUR on gastric cancer (GC) and its related molecular mechanisms is not clear. Here, we first observed that ENKUR significantly inhibited cell migration, invasion, and metastasis in GC. The molecular basis showed ß-catenin-mediated epithelial-mesenchymal transition (EMT) signaling was inactivated in ENKUR-overexpressing GC cells. In addition, ENKUR knockdown markedly restored cell migration and invasion. Subsequently, ENKUR bound to MYH9 and decreased its protein expression by recruiting E3 ubiquitin ligase FBXW7 to form an ubiquitinated degradation complex. The downregulated MYH9 protein weakened the recruitment of the deubiquitinase USP2 and thus promoted the degradation of ß-catenin protein, which finally suppressed EMT signaling. Finally, the oncogenic transcription factor c-Jun bound to ENKUR promoter and reduced its expression in GC. In clinical samples, decreased ENKUR expression promoted the unfavorable prognosis of GC. Our data proved the vital role of ENKUR on suppressing cell migration, invasion, and metastasis and demonstrated its potential as a therapeutic target for GC.

14.
Int J Biol Sci ; 18(10): 4171-4186, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35844805

RESUMO

CCDC65 is a member of the coiled-coil domain-containing protein family and was only reported in gastric cancer by our group. We first observed that it is downregulated in lung adenocarcinoma based on the TCGA database. Reduced CCDC65 protein was shown as an unfavorable factor promoting the clinical progression in lung adenocarcinoma. Subsequently, CCDC65-/- mice were found possibly dead of hydrocephalus. Compared with the CCDC65+/+ mice, the downregulation of CCDC65 in CCDC65+/- mice significantly increased the formation ability of lung cancer induced by urethane. In the subsequent investigation, we observed that CCDC65 functions as a tumor suppressor repressing cell proliferation in vitro and in vivo. Molecular mechanism showed that CCDC65 recruited E3 ubiquitin ligase FBXW7 to induce the ubiquitination degradation of c-Myc, an oncogenic transcription factor in tumors, and reduced c-Myc binding to ENO1 promoter, which suppressed the transcription of ENO1. In addition, CCDC65 also recruited FBXW7 to degrade ENO1 protein by ubiquitinated modulation. The downregulated ENO1 further reduced the phosphorylation activation of AKT1, which thus inactivated the cell cycle signal. Our data demonstrated that CCDC65 is a potential tumor suppressor by recruiting FBWX7 to suppress c-Myc/ENO1-induced cell cycle signal in lung adenocarcinoma.


Assuntos
Adenocarcinoma de Pulmão , Glicoproteínas , Neoplasias Pulmonares , Animais , Camundongos , Adenocarcinoma de Pulmão/genética , Linhagem Celular Tumoral , Proliferação de Células , Proteína 7 com Repetições F-Box-WD/genética , Técnicas de Inativação de Genes , Glicoproteínas/metabolismo , Neoplasias Pulmonares/metabolismo , Camundongos Knockout , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
15.
J Gastrointest Oncol ; 13(2): 510-526, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35557573

RESUMO

Background: Recent studies indicate that non-coding circular RNAs (circRNAs) are involved in the development of esophageal carcinoma (EC). This study aimed to identify differential expression of circRNAs in EC, which can provide potential biomarkers and therapeutic targets for EC treatment and improve the understanding of tumorigenesis mechanism. Methods: First, samples (n=5) of EC tissues and adjacent normal tissue were sent for circRNA microarray detection, Second, further bioinformatic analysis was performed, including circRNA-microRNA (miRNA), co-expression network analysis, Spearman correlation test, and cancer-related circRNA-miRNA axis analysis. Finally, the expression of circRNA that our analysis predicted to be hub genes was verified in samples (n=15) of EC tissues and adjacent normal tissue by real-time polymerase chain reaction (RT-PCR). Results: Microarray identified 102 upregulated and 67 significantly downregulated circRNAs were in EC patients' tumors relative to adjacent normal tissue. One upregulated circRNA (hsa_circRNA_401955) showed the most connection with MREs, therefore was regarded as the hub gene by the Spearman correlation test. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses showed that four primary pathways (mRNA surveillance, cytoskeleton actin regulation, spliceosome, and the NOD-like receptor signaling pathway) were predicted in the hub circRNA's five connected miRNA response elements (MREs). Furthermore, cancer-related circRNA-miRNA axis analyses showed that hsa_circRNA_100375 and its four connected MREs participated in the cancer-related pathway. RT-PCR showed that hsa_circRNA_100375 and hsa_circRNA_401955 were significantly increased in the tumor tissues of EC patients. Conclusions: Abnormal expression of circRNAs was involved in the tumorigenesis of EC. Key circRNAs, namely hsa_circRNA_401955 and hsa_circRNA_100375, may be as potential biomarkers and therapeutic targets for the treatment of EC.

16.
ACS Biomater Sci Eng ; 8(6): 2526-2536, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35612599

RESUMO

Ovarian cancer (OV) seriously damages women's health because of refractory OV and the development of platinum (Pt) resistance. New treatment strategies are urgently needed to deal with the treatment of cisplatin-resistant OV. Here, a reduction-sensitive pegylated Pt(IV) prodrug was synthesized by amidation of methoxy polyethylene glycol amine (PEG750-NH2) with monocarboxylic Pt(IV) prodrug (Pt(IV)-COOH). Then alantolactone (AL) loaded PEG-Pt(IV) nanocarriers (NP(Pt)@AL) were prepared. In the cisplatin-resistant model of OV, cancer cells actively ingest NP(Pt)@AL through endocytosis, and AL and Pt(II) were disintegrated and released under high intracellular reductant condition. The activity of thioredoxin reductase 1 (TrxR1) inhibited by AL and the adducts of Pt(II) with mitochondrial DNA (mDNA) can costimulate reactive oxygen species (ROS) and reactivate the mitochondrial pathway of apoptosis. Meanwhile, Pt(II) binds with nuclear DNA (nDNA) to jointly promote cell apoptosis. Both in vitro and in vivo results demonstrated that NP(Pt)@AL could effectively reverse the drug resistance and displayed excellent synergistic therapeutic efficacy on platinum-resistant OV with high safety. Therefore, reactivation of the mitochondrial pathway of apoptosis would be a potential strategy to improve the therapeutic effect of Pt-based chemotherapy and even reverse drug resistance.


Assuntos
Antineoplásicos , Neoplasias Ovarianas , Pró-Fármacos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Feminino , Humanos , Lactonas , Neoplasias Ovarianas/tratamento farmacológico , Platina/farmacologia , Platina/uso terapêutico , Polietilenoglicóis/uso terapêutico , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Sesquiterpenos de Eudesmano
17.
Int J Biol Sci ; 18(6): 2553-2567, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35414777

RESUMO

ENKUR plays a crucial role in lung and colorectal cancers. Chemically synthesized cinobufotalin (CB) showed its significant anti-cancer effect in nasopharyngeal carcinoma. However, the roles of ENKUR and CB along with their correlation are still unknown in hepatocellular carcinoma (HCC). In this study, ENKUR expression in HCC tissue and cells were detected. The relationship between ENKUR expression and clinical pathology was also assessed. In vivo and in vitro experiments were conducted to explore the effects and molecular basis of ENKUR and CB in HCC. ENKUR expression was correlated with HCC progression and patient prognosis. Furthermore, ENKUR could inhibit tumor proliferation, metastasis, and sorafenib resistance in HCC. Mechanistic studies showed that ENKUR or its Enkurin domain could bind to MYH9 and decrease its expression by binding to ß-catenin and inhibiting its nuclear transfer, thus decreasing c-Jun level. Low expression of MYH9 suppressed recruitment of deubiquitination enzyme USP7, promoting degradation of the c-Myc. Therefore, cell cycle and EMT signals were suppressed. CB as a safe and effective anti-cancer compound up-regulates the expression of ENKUR via inhibiting PI3K/AKT/c-Jun-mediated transcription suppression. These findings show that ENKUR induced by CB antagonizes ß-catenin/c-Jun/MYH9/USP7 pathway, thus increasing c-Myc ubiquitin degradation and finally suppressing cell cycle and EMT signals.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Proteínas Adaptadoras de Transdução de Sinal , Bufanolídeos , Proteínas de Ligação a Calmodulina , Carcinoma Hepatocelular/metabolismo , Cateninas/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/metabolismo , Cadeias Pesadas de Miosina , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-myc , Peptidase 7 Específica de Ubiquitina/metabolismo , beta Catenina/metabolismo
18.
Acta Pharmacol Sin ; 43(10): 2687-2695, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35296779

RESUMO

The small molecule chemical compound cinobufotalin (CB) is reported to be a potential antitumour drug that increases cisplatin (DDP) sensitivity in nasopharyngeal carcinoma. In this study, we first found that CB decreased DDP resistance, migration and invasion in lung adenocarcinoma (LUAD). Mechanistic studies showed that CB induced ENKUR expression by suppressing PI3K/AKT signalling to downregulate c-Jun, a negative transcription factor of ENKUR. Furthermore, ENKUR was shown to function as a tumour suppressor by binding to ß-catenin to decrease c-Jun expression, thus suppressing MYH9 transcription. Interestingly, MYH9 is a binding protein of ENKUR. The Enkurin domain of ENKUR binds to MYH9, and the Myosin_tail of MYH9 binds to ENKUR. Downregulation of MYH9 reduced the recruitment of the deubiquitinase USP7, leading to increased c-Myc ubiquitination and degradation, decreased c-Myc nuclear translocation, and inactivation of epithelial-mesenchymal transition (EMT) signalling, thus attenuating DDP resistance. Our data demonstrated that CB is a promising antitumour drug and may be a candidate chemotherapeutic drug for LUAD patients.


Assuntos
Adenocarcinoma de Pulmão , Antineoplásicos , Cisplatino , Neoplasias Nasofaríngeas , Proteínas Adaptadoras de Transdução de Sinal , Adenocarcinoma de Pulmão/tratamento farmacológico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Bufanolídeos , Proteínas de Ligação a Calmodulina , Linhagem Celular Tumoral , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Cadeias Pesadas de Miosina , Miosinas/metabolismo , Neoplasias Nasofaríngeas/tratamento farmacológico , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fatores de Transcrição/metabolismo , Peptidase 7 Específica de Ubiquitina , beta Catenina/metabolismo
19.
Cancer Lett ; 531: 57-70, 2022 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-35114328

RESUMO

Clinically, the metastasis of tumor cells is the key factor of death in patients with cancer. In this study, we used a model of metastatic nasopharyngeal carcinoma (NPC) to explore the effects of a new chemical, cinobufagin (CB), combined with cisplatin (DDP). We observed that chemically synthesized CB strongly decreased the metastasis of NPC. Furthermore, a better therapeutic effect was shown when CB was combined with DDP. Molecular analysis revealed that CB induced ENKUR expression by deregulating the PI3K/AKT pathway and suppressing c-Jun, an oncogenic transcriptional factor that binds to the ENKUR promoter and negatively modulated its expression in NPC. ENKUR as a tumor suppressor binds to MYH9 and decreases its expression by recruiting ß-catenin via its enkurin domain to prevent its nuclear accumulation, which therefore suppresses c-Jun-induced MYH9 expression. Subsequently, downregulated MYH9 reduces the enlistment of E3 ligase UBE3A and thus decreases the UBE3A-mediated ubiquitination degradation of p53, a key tumor suppressor that decreases epithelial-mesenchymal transition (EMT). Clinical sample analysis demonstrated that the ENKUR expression level was significantly reduced in NPC tissues. Its decreased expression substantially promoted clinical progression and reflected poor prognosis for patients with NPC. This study demonstrated that CB induced ENKUR to repress the ß-catenin/c-Jun/MYH9 signal and thus decreased UBE3A-mediated p53 ubiquitination degradation. As a result, the EMT signal was inactivated to suppress NPC metastasis.


Assuntos
Carcinoma , Neoplasias Nasofaríngeas , Proteínas Adaptadoras de Transdução de Sinal , Bufanolídeos , Proteínas de Ligação a Calmodulina/metabolismo , Carcinoma/tratamento farmacológico , Carcinoma/genética , Carcinoma/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Humanos , Carcinoma Nasofaríngeo/tratamento farmacológico , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/metabolismo , Neoplasias Nasofaríngeas/tratamento farmacológico , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , beta Catenina/metabolismo
20.
Aging (Albany NY) ; 13(24): 26180-26200, 2021 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-34959221

RESUMO

The prognosis of glioma is poor as its pathogenesis and mechanisms underlying cisplatin chemoresistance remain unclear. Nucleosome assembly protein 1 like 1 (NAP1L1) is regarded as a hallmark of malignant tumors. However, the role of NAP1L1 in glioma remains unknown. In this study, we aimed to investigate the molecular functions of NAP1L1 in glioma and its involvement in cisplatin chemoresistance, if any. NAP1L1 was found to be upregulated in samples from The Cancer Genome Atlas (TCGA) database. Immunohistochemistry indicated that NAP1L1 and hepatoma-derived growth factor (HDGF) were enhanced in glioma as compared to the para-tumor tissues. High expressions of NAP1L1 and HDGF were positively correlated with the WHO grade, KPS, Ki-67 index, and recurrence. Moreover, NAP1L1 expression was also positively correlated with the HDGF expression in glioma tissues. Functional studies suggested that knocking down NAP1L1 could significantly inhibit glioma cell proliferation both in vitro and in vivo, as well as enhance the sensitivity of glioma cells to cisplatin (cDDP) in vitro. Mechanistically, NAP1L1 could interact with HDGF at the protein level and they co-localize in the cytoplasm. HDGF knockdown in NAP1L1-overexpressing glioma cells significantly inhibited cell proliferation. Furthermore, HDGF could interact with c-Jun, an oncogenic transcription factor, which eventually induced the expressions of cell cycle promoters, CCND1/CDK4/CDK6. This finding suggested that NAP1L1 could interact with HDGF, and the latter recruited c-Jun, a key oncogenic transcription factor, that further induced CCND1/CDK4/CDK6 expression, thereby promoting proliferation and chemoresistance in glioma cells. High expression of NAP1L1 in glioma tissues indicated shorter overall survival in glioma patients.


Assuntos
Cisplatino , Resistencia a Medicamentos Antineoplásicos , Glioma/patologia , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteína 1 de Modelagem do Nucleossomo/genética , Proliferação de Células , Ciclina D1/genética , Quinase 4 Dependente de Ciclina/genética , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/genética , Glioma/metabolismo , Humanos , Imuno-Histoquímica , Oncogenes , Prognóstico , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA