RESUMO
Wnt/ß-catenin signaling plays a crucial role in cancer development, primarily activated by ß-catenin forming a transcription complex with LEF/TCF in the nucleus and initiating the transcription of Wnt target genes. Here, we report that LEF1, a member of the LEF/TCF family, can form intrinsically disordered region (IDR)-dependent condensates with ß-catenin both in vivo and in vitro, which is required for ß-catenin-dependent transcription. Notably, LEF1 with disrupted IDR lost its promoting activity on tumor proliferation and metastasis, which can be restored by substituting with FUS IDR. Our findings provide new insight into the essential role of liquid-liquid phase separation in Wnt/ß-catenin signaling and present a potential new target for cancer therapy.
Assuntos
Núcleo Celular , beta Catenina , beta Catenina/genética , Ativação Transcricional/genética , Via de Sinalização Wnt/genéticaRESUMO
Zeolitic imidazolate framework ZIF-8 beads of 2-3mm in diameter were prepared using a simple one-step phase inversion method. The beads were fabricated by different amounts of ZIF-8 to polyether sulfone (PES) ratios. ZIF-8 played the role of an adsorbent while PES acted as a binder in the composite matrix to keep the ZIF-8 particles. Since ZIF-8 is highly hydrophobic, the beads floated on water and adsorbed oil droplets successfully. This efficient oil adsorption is attributed to the hydrophobicity and high surface area of ZIF-8 particles which can effectively adsorb oil droplets. Different characterization techniques were used to understand the textural properties of the composite beads. The FESEM analysis showed that ZIF-8 particles were well coated and dispersed into the polymer bead composites and some pores are created on the beads surface at higher loadings which facilitated high oil sorption. The nitrogen adsorption-desorption indicated that ZIF-8/PES beads had very high surface area which makes them suitable for adsorption applications. The ZIF-8/PES beads demonstrate easy handling and recycling compared to ZIF-8 powder and showed superior buoyancy and oil sorption capacity compared with natural sorbents like activated carbon. This study shows the phase inversion method can be applied to produce a variety of functional composite bead materials for specific applications like adsorption.
RESUMO
Efficient solar-powered water oxidation over the TaON-based anodes requires coupling this photoactive n-type semiconductor to an electrooxidation catalyst to improve the otherwise unsatisfactory activity and stability. Herein, we examine how functionalization with electrodeposited nickel oxide, NiOx , affects the performance of screen-printed TaON photoanodes post-necked with titania (TiO2 -TaON). The effects of the NiOx photo-electrodeposition parameters on the microstructure and photocatalytic performance of the resulting anodes are explored. Enhancements in the transient water oxidation photocurrent densities by sixfold vs. unmodified TiO2 -TaON were achieved with the use of the NiOx /TiO2 -TaON photoanodes. Long-term stability tests reveal a slow but persistent degradation of the performance of the multicomponent photocatalysts under the severely oxidizing conditions of water photo-oxidation coincident with continuous morphological changes in the NiOx deposits.
RESUMO
An efficient delivery system is critical for the success of cell therapy. To deliver cells to a dynamic organ, the biomaterial vehicle should mechanically match with the non-linearly elastic host tissue. In this study, non-linearly elastic biomaterials have been fabricated from a chemically crosslinked elastomeric poly(glycerol sebacate) (PGS) and thermoplastic poly(l-lactic acid) (PLLA) using the core/shell electrospinning technique. The spun fibrous materials containing a PGS core and PLLA shell demonstrate J-shaped stress-strain curves, having ultimate tensile strength (UTS), rupture elongation and stiffness constants of 1 ± 0.2 MPa, 25 ± 3% and 12 ± 2, respectively, which are comparable to skin tissue properties reported previously. Our ex vivo and in vivo trials have shown that the elastomeric mesh supports and fosters the growth of enteric neural crest (ENC) progenitor cells, and that the cell-seeded elastomeric fibrous sheet physically remains in intimate contact with guts after grafting, providing the effective delivery of the progenitor cells to an embryonic and post-natal gut environment.