Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
1.
Int J Mol Sci ; 25(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38474017

RESUMO

Ubiquitin-specific protease 7 inhibitors (USP7i) are considered a novel class of anticancer drugs. Cancer cells occasionally become insensitive to anticancer drugs, known as chemoresistance, by acquiring multidrug resistance, resulting in poor clinical outcomes in patients with cancer. However, the chemoresistance of cancer cells to USP7i (P22077 and P5091) and mechanisms to overcome it have not yet been investigated. In the present study, we generated human cancer cells with acquired resistance to USP7i-induced cell death. Gene expression profiling showed that heat stress response (HSR)- and unfolded protein response (UPR)-related genes were largely upregulated in USP7i-resistant cancer cells. Biochemical studies showed that USP7i induced the phosphorylation and activation of heat shock transcription factor 1 (HSF1), mediated by the endoplasmic reticulum (ER) stress protein kinase R-like ER kinase (PERK) signaling pathway. Inhibition of HSF1 and PERK significantly sensitized cancer cells to USP7i-induced cytotoxicity. Our study demonstrated that the ER stress-PERK axis is responsible for chemoresistance to USP7i, and inhibiting PERK is a potential strategy for improving the anticancer efficacy of USP7i.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Peptidase 7 Específica de Ubiquitina/genética , eIF-2 Quinase/metabolismo , Estresse do Retículo Endoplasmático , Resposta a Proteínas não Dobradas , Antineoplásicos/farmacologia
2.
Int J Biol Macromol ; 262(Pt 1): 129875, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38320638

RESUMO

Long intergenic non-coding RNA(lincRNA) is transcribed from the intermediate regions of coding genes and plays a pivotal role in the regulation of lipid synthesis. N6-methyladenosine (m6A) modification is widely prevalent in eukaryotic mRNAs and serves as a regulatory factor in diverse biological processes. This study aims to delineate the mechanism by which Linc-smad7 mediates m6A methylation to regulate milk fat synthesis. Tissue expression analysis in this study revealed a high expression of Linc-smad7 in breast tissue during pregnancy. Cell proliferation assays, including CCK8 and EdU assays, demonstrated that Linc-smad7 had no significant impact on the proliferation of mammary epithelial cells. However, during mammary epithelial cell differentiation, the overexpression of Linc-smad7 led to reduced lipid formation, whereas interference with Linc-smad7 promoted lipogenesis. Mechanistically, Linc-smad7 was found to modulate RNA m6A levels, as evidenced by dot blot assays and methylated RNA immunoprecipitation sequencing (MeRIP-Seq). Subsequent validation through RT-qPCR corroborated these findings, aligning with the m6A sequencing outcomes. Furthermore, co-transfection experiments elucidated that Linc-smad7 regulates lipid synthesis in mammary epithelial cells by influencing the expression of METTL14. In summary, these findings underscore the regulatory role of Linc-smad7 in controlling METTL14 gene expression, thereby mediating m6A modifications to regulate lipid synthesis in mammary epithelial cells.


Assuntos
Células Epiteliais , Lipogênese , Animais , Camundongos , Lipogênese/genética , Diferenciação Celular , RNA Mensageiro , Lipídeos
3.
Cell Death Dis ; 15(2): 112, 2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321024

RESUMO

Despite that the docectaxel-cisplatin-5-fluorouracil (TPF) induction chemotherapy has greatly improved patients' survival and became the first-line treatment for advanced nasopharyngeal carcinoma (NPC), not all patients could benefit from this therapy. The mechanism underlying the TPF chemoresistance remains unclear. Here, by analyzing gene-expression microarray data and survival of patients who received TPF chemotherapy, we identify transcription factor ATMIN as a chemoresistance gene in response to TPF chemotherapy in NPC. Mass spectrometry and Co-IP assays reveal that USP10 deubiquitinates and stabilizes ATMIN protein, resulting the high-ATMIN expression in NPC. Knockdown of ATMIN suppresses the cell proliferation and facilitates the docetaxel-sensitivity of NPC cells both in vitro and in vivo, while overexpression of ATMIN exerts the opposite effect. Mechanistically, ChIP-seq combined with RNA-seq analysis suggests that ATMIN is associated with the cell death signaling and identifies ten candidate target genes of ATMIN. We further confirm that ATMIN transcriptionally activates the downstream target gene LCK and stabilizes it to facilitate cell proliferation and docetaxel resistance. Taken together, our findings broaden the insight into the molecular mechanism of chemoresistance in NPC, and the USP10-ATMIN-LCK axis provides potential therapeutic targets for the management of NPC.


Assuntos
Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/patologia , Docetaxel/uso terapêutico , Neoplasias Nasofaríngeas/patologia , Fatores de Transcrição/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Fluoruracila/uso terapêutico , Quimiorradioterapia/métodos , Cisplatino/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Ubiquitina Tiolesterase
4.
Nutrients ; 16(2)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38276543

RESUMO

Plant extract fermentation is widely employed to enhance the nutritional and pharmaceutical value of functional foods. Polygonum cuspidatum (Pc) contains flavonoids, anthraquinones, and stilbenes, imparting protective effects against inflammatory diseases, cancer, diabetes, and cardiovascular diseases. However, the effects of fermented Pc on skeletal muscle strength remain unexplored. In this study, we generated fermented Pc using a complex of microorganisms containing Lactobacillus spp. (McPc) and assessed its effects on muscle strength and motor function in mice. Compared to unfermented Pc water extract, elevated levels of emodin and resveratrol were noted in McPc. This was identified and quantified using UPLC-QTOF/MS and HPLC techniques. Gene expression profiling through RNA-seq and quantitative RT-PCR revealed that McPc administration upregulated the expression of genes associated with antioxidants, glycolysis, oxidative phosphorylation, fatty acid oxidation, and mitochondrial biogenesis in cultured C2C12 myotubes and the gastrocnemius muscle in mice. McPc significantly improved skeletal muscle strength, motor coordination, and traction force in mice subjected to sciatic neurectomy and high-fat diet (HFD). McPc administration exhibited more pronounced improvement of obesity, hyperglycemia, fatty liver, and hyperlipidemia in HFD mice compared to control group. These findings support the notion that emodin and resveratrol-enriched McPc may offer health benefits for addressing skeletal muscle weakness.


Assuntos
Emodina , Fallopia japonica , Camundongos , Animais , Emodina/metabolismo , Resveratrol/farmacologia , Resveratrol/metabolismo , Antraquinonas , Músculo Esquelético/metabolismo
5.
Medicine (Baltimore) ; 103(4): e36799, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38277535

RESUMO

Pyroptosis plays a key role in the death of cells including cardiomyocytes, and it is associated with a variety of cardiovascular diseases. However, the role of pyroptosis-related genes (PRGs) in hypertrophic cardiomyopathy (HCM) is not well characterized. This study aimed to identify key biomarkers and explore the molecular mechanisms underlying the functions of the PRGs in HCM. The differentially expressed genes were identified by GEO2R, and the differentially expressed pyroptosis-related genes (DEPRGs) of HCM were identified by combining with PRGs. Enrichment analysis was performed using the "clusterProfiler" package of the R software. Protein-protein interactions (PPI) network analysis was performed using the STRING database, and hub genes were screened using cytoHubba. TF-miRNA coregulatory networks and protein-chemical interactions were analyzed using NetworkAnalyst. RT-PCR/WB was used for expression validation of HCM diagnostic markers. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and Western Blot (WB) were used to measure and compare the expression of the identified genes in the cardiac hypertrophy model and the control group. A total of 20 DEPRGs were identified, which primarily showed enrichment for the positive regulation of cytokine production, regulation of response to biotic stimulus, tumor necrosis factor production, and other biological processes. These processes primarily involved pathways related to Renin-angiotensin system, Adipocytokine signaling pathway and NF-kappa B signaling pathway. Then, a PPI network was constructed, and 8 hub genes were identified. After verification analysis, the finally identified HCM-related diagnostic markers were upregulated gene protein tyrosine phosphatase non-receptor type 11 (PTPN11), downregulated genes interleukin-1 receptor-associated kinase 3 (IRAK3), and annexin A2 (ANXA2). Further GSEA analysis revealed these 3 biomarkers primarily related to cardiac muscle contraction, hypertrophic cardiomyopathy, fatty acid degradation and ECM - receptor interaction. Moreover, we also elucidated the interaction network of these biomarkers with the miRNA network and known compounds, respectively. RT-PCR/WB results indicated that PTPN11 expression was significantly increased, and IRAK3 and ANXA2 expressions were significantly decreased in HCM. This study identified PTPN11, IRAK3, and ANXA2 as pyroptosis-associated biomarkers of HCM, with the potential to reveal the development and pathogenesis of HCM and could be potential therapeutic targets.


Assuntos
Cardiomiopatia Hipertrófica , MicroRNAs , Humanos , Redes Reguladoras de Genes , Perfilação da Expressão Gênica/métodos , Piroptose/genética , Biomarcadores , MicroRNAs/genética , MicroRNAs/metabolismo , Cardiomiopatia Hipertrófica/diagnóstico , Cardiomiopatia Hipertrófica/genética , Biologia Computacional/métodos
6.
Immunol Invest ; 53(3): 416-436, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38206296

RESUMO

Macrophages are significant immune-related cells that are essential for tissue growth, homeostasis maintenance, pathogen resistance, and damage healing. The studies on the metabolic control of macrophage polarization state in recent years and the influence of polarization status on the development and incidence of associated disorders are expounded upon in this article. Firstly, we reviewed the origin and classification of macrophages, with particular attention paid to how the tricarboxylic acid cycle and the three primary metabolites affect macrophage polarization. The primary metabolic hub that controls macrophage polarization is the tricarboxylic acid cycle. Finally, we reviewed the polarization state of macrophages influences the onset and progression of cancers, inflammatory disorders, and other illnesses.


Assuntos
Macrófagos , Neoplasias , Humanos , Macrófagos/metabolismo , Homeostase , Ativação de Macrófagos , Neoplasias/metabolismo
7.
World J Gastroenterol ; 29(13): 1911-1941, 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37155531

RESUMO

Colorectal cancer (CRC) is the most common digestive malignancy across the world. Its first-line treatments applied in the routine clinical setting include surgery, chemotherapy, radiotherapy, targeted therapy, and immunotherapy. However, resistance to therapy has been identified as the major clinical challenge that fails the treatment method, leading to recurrence and distant metastasis. An increasing number of studies have been attempting to explore the underlying mechanisms of the resistance of CRC cells to different therapies, which can be summarized into two aspects: (1) The intrinsic characters and adapted alterations of CRC cells before and during treatment that regulate the drug metabolism, drug transport, drug target, and the activation of signaling pathways; and (2) the suppressive features of the tumor microenvironment (TME). To combat the issue of therapeutic resistance, effective strategies are warranted with a focus on the restoration of CRC cells' sensitivity to specific treatments as well as reprogramming impressive TME into stimulatory conditions. To date, nanotechnology seems promising with scope for improvement of drug mobility, treatment efficacy, and reduction of systemic toxicity. The instinctive advantages offered by nanomaterials enable the diversity of loading cargoes to increase drug concentration and targeting specificity, as well as offer a platform for trying the combination of different treatments to eventually prevent tumor recurrence, metastasis, and reversion of therapy resistance. The present review intends to summarize the known mechanisms of CRC resistance to chemotherapy, radiotherapy, immunotherapy, and targeted therapy, as well as the process of metastasis. We have also emphasized the recent application of nanomaterials in combating therapeutic resistance and preventing metastasis either by combining with other treatment approaches or alone. In summary, nanomedicine is an emerging technology with potential for CRC treatment; hence, efforts should be devoted to targeting cancer cells for the restoration of therapeutic sensitivity as well as reprogramming the TME. It is believed that the combined strategy will be beneficial to achieve synergistic outcomes contributing to control and management of CRC in the future.


Assuntos
Neoplasias Colorretais , Resistencia a Medicamentos Antineoplásicos , Humanos , Nanotecnologia , Sistemas de Liberação de Medicamentos , Imunoterapia , Neoplasias Colorretais/tratamento farmacológico , Microambiente Tumoral
8.
Front Cell Infect Microbiol ; 13: 1129996, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36968108

RESUMO

Increasing attention is being paid to the unique roles gut microbes play in both physiological and pathological processes. Crohn's disease (CD) is a chronic, relapsing, inflammatory disease of the gastrointestinal tract with unknown etiology. Currently, gastrointestinal infection has been proposed as one initiating factor of CD. Yersinia enterocolitica, a zoonotic pathogen that exists widely in nature, is one of the most common bacteria causing acute infectious gastroenteritis, which displays clinical manifestations similar to CD. However, the specific role of Y. enterocolitica in CD is controversial. In this Review, we discuss the current knowledge on how Y. enterocolitica and derived microbial compounds may link to the pathogenesis of CD. We highlight examples of Y. enterocolitica-targeted interventions in the diagnosis and treatment of CD, and provide perspectives for future basic and translational investigations on this topic.


Assuntos
Doença de Crohn , Gastroenteropatias , Yersiniose , Yersinia enterocolitica , Humanos , Doença de Crohn/microbiologia , Yersiniose/diagnóstico , Yersiniose/microbiologia
9.
Front Immunol ; 14: 1077041, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36761761

RESUMO

Peptidylarginine deiminases (PADs) are the only enzyme class known to deiminate arginine residues into citrulline in proteins, a process known as citrullination. This is an important post-translational modification that functions in several physiological and pathological processes. Neutrophil extracellular traps (NETs) are generated by NETosis, a novel cell death in neutrophils and a double-edged sword in inflammation. Excessive activation of PADs and NETs is critically implicated in their transformation from a physiological to a pathological state. Herein, we review the physiological and pathological functions of PADs and NETs, in particular, the involvement of PAD2 and PAD4 in the digestive system, from inflammatory to oncological diseases, along with related therapeutic prospects.


Assuntos
Armadilhas Extracelulares , Desiminases de Arginina em Proteínas/genética , Armadilhas Extracelulares/metabolismo , Hidrolases/genética , Citrulinação , Sistema Digestório/metabolismo
10.
Anticancer Res ; 43(3): 1149-1157, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36854496

RESUMO

BACKGROUND/AIM: Cachexia - a wasting disorder of adipose and skeletal muscle tissue - is the most common driver of poor prognosis in patients with advanced lung cancer. Parathyroid hormone-like hormone (PTHLH) is potentially a critical factor in cancer-associated cachexia. We previously showed that streptonigrin - an aminoquinone with antitumor effects - inhibited the interaction between TCF4 and TWIST1. This study aimed to determine the anti-cachectic performance of streptonigrin in lung cancer. MATERIALS AND METHODS: We assessed the effect of streptonigrin on the interaction of TCF4 and TWIST1 using co-immunoprecipitation and a mammalian-two hybrid luciferase assay, which was confirmed by an in vitro GST pull-down assay using recombinant bHLH domain-containing TCF4 and TWIST1. We assessed the anti-cachectic effect of streptonigrin in vivo using an LLC1 cell-induced tumour-bearing mouse model. Changes in the degree of skeletal muscle and adipose tissue wasting were determined by measuring the weights of gastrocnemius and epidydimal white adipose tissue. RESULTS: Streptonigrin was found to inhibit the interaction of TCF4 with TWIST1 in a dose-dependent manner. The in vitro GST pull-down assay revealed that streptonigrin directly inhibited the interaction between TCF4 and TWIST1. The expression of PTHLH mRNA, which is transcriptionally regulated by the TCF4/TWIST1 complex in response to TGF-ß1 signalling, was decreased in streptonigrin-treated lung cancer cells. Streptonigrin significantly decreased the expression of proteolysis-related genes in skeletal muscle and browning-related genes in white adipose tissues of LLC1-induced tumour-bearing mice. CONCLUSION: Streptonigrin exerts potent therapeutic effects on lung cancer-induced cachexia by suppressing TCF4/TWIST1-mediated PTHLH expression.


Assuntos
Caquexia , Neoplasias Pulmonares , Animais , Camundongos , Tecido Adiposo , Adiposidade , Caquexia/tratamento farmacológico , Caquexia/etiologia , Neoplasias Pulmonares/complicações , Neoplasias Pulmonares/tratamento farmacológico , Mamíferos , Estreptonigrina
11.
Int J Pharm ; 630: 122376, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36400133

RESUMO

High levels of proinflammatory cytokines, macrophage polarization status and immune-mediated angiogenesis play pivotal roles in the pathogenesis of inflammatory bowel disease (IBD). Thalidomide, an anti-inflammatory, immunomodulatory and antiangiogenic agent, is used off-label for treatment of IBD. The therapeutic potential of thalidomide is limited by its poor solubility and side effects associated with its systemic exposure. To address these issues and promote its therapeutic effects on IBD, thalidomide nanocrystals (Thali NCs) were prepared and coated with polydopamine (PDA), a potential macrophage polarization modulator, to form PDA coated Thali NCs (Thali@PDA). Thali@PDA possessed a high drug loading and displayed average particle size of 764.7 ± 50.30 nm. It showed a better anti-colitis effect than bare thalidomide nanocrystals at the same dose of thalidomide. Synergistic effects of polydopamine on anti-inflammatory and anti-angiogenic activities of thalidomide were observed. Furthermore, PDA coating could direct polarization of macrophages towards M2 phenotype, which boosted therapeutic effects of Thali@PDA on IBD. Upon repeated dosing of Thali@PDA for one week, symptoms of IBD in mice were significantly relieved, and histomorphology of the colitis colons were normalized. Key proinflammatory cytokine levels in the inflamed intestines were significantly decreased. Toxicity study also revealed that Thali@PDA is a safe formulation.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Nanopartículas , Camundongos , Animais , Talidomida/farmacologia , Inibidores da Angiogênese/efeitos adversos , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/patologia , Anti-Inflamatórios/uso terapêutico , Doenças Inflamatórias Intestinais/tratamento farmacológico , Macrófagos , Citocinas , Sulfato de Dextrana/farmacologia
12.
Orthop Surg ; 14(12): 3358-3366, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36419319

RESUMO

OBJECTIVE: Hook plate fixation is the traditional method for treating distal clavicle fractures. However, in recent years, locked plate applications have emerged as a promising treatment method. This study aimed to compare the short- and mid-term clinical efficacy of anatomical locked plate fixation with coracoclavicular ligament augmentation using anchor nails to that of hook plate fixation in treating distal clavicle fractures. METHODS: This was a retrospective single-center cohort study investigating patients with distal clavicle fractures treated between January 2016 and February 2019 in Zhongnan Hospital of Wuhan University. Fifty-nine eligible patients who underwent either anatomical locked plate fixation with coracoclavicular ligament augmentation using anchor nails (LPF&CLA group; 20 patients) or clavicle hook plate fixation (CHPF group; 39 patients) were included. The visual analog scale (VAS) and Constant-Murley shoulder scores were used to assess shoulder function. In addition, the coracoclavicular distance between the affected and unaffected shoulders (ΔCC distance) was measured to assess the reduction. Patients were followed up at 3 months, 6 months, and 1 year postoperatively. The comparisons between the two groups were made using Student's t-test, chi-square test, or Fisher's exact test, if appropriate. RESULTS: Preoperative VAS scores were similar in both groups. At 3- and 6-month follow-up, the VAS score was significantly higher in the CHPF group than in the LPF&CLA group. In contrast, the Constant-Murley shoulder score was significantly lower in the CHPF group than in the LPF&CLA group. When the hook plates were removed, there was no statistical difference in both VAS (0.2 ± 0.4 in LPF&CLA group vs. 0.5 ± 0.5 in CHPF group, p = 0.05) and Constant-Murley shoulder (96.1 ± 3.1 in LPF&CLA group vs. 93.8 ± 5.2 in CHPF group, p = 0.08) scores at the last follow-up. Postoperatively, the ΔCC distance was 2.37 ± 1.93 mm in the LPF&CLA group and -1.56 ± 1.34 mm in the CHPF group. One year after surgery, ΔCC distance increased to 3.96 ± 1.17 mm in the LPF&CLA group and to -0.89 ± 1.39 mm in the CHPF group. CONCLUSION: For distal clavicle fractures in which the coracoclavicular ligament is disrupted, anatomical locked plate fixation with coracoclavicular ligament augmentation achieved better functional recovery and less pain than hook plate fixation at the 6-month follow-up. However, the hook plate provided better reduction throughout the follow-up period and shoulder pain could be relieved using removal surgery. Therefore, locked plates with coracoclavicular ligament augmentation favors post-surgery pain relief while harvesting similar functional outcomes to hook plate fixation.


Assuntos
Ligamentos , Humanos , Estudos de Coortes , Estudos Retrospectivos
13.
Cancer Cell Int ; 22(1): 331, 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36316696

RESUMO

BACKGROUND: To summarize the impact of radiotherapy (RT) and chemotherapy delays on patients with nasopharyngeal carcinoma (NPC) during the COVID-19 pandemic. METHODS: We retrospectively included 233 patients with stage II-IVa NPC treated with RT and chemotherapy between December 11, 2019 and March 11, 2020. The outcomes were elevation in the EBV DNA load between two adjacent cycles of chemotherapy or during RT, and 1-year disease-free survival (DFS). RESULTS: RT delay occurred in 117 (50%) patients, and chemotherapy delay occurred in 220 (94%) patients. RT delay of ≥ 6 days was associated with a higher EBV DNA elevation rate (20.4% vs. 3.6%, odds ratio [OR] = 6.93 [95% CI = 2.49-19.32], P < 0.001), and worse 1-year DFS (91.2% vs. 97.8%, HR = 3.61 [95% CI = 1.37-9.50], P = 0.006), compared with on-schedule RT or delay of < 6 days. Chemotherapy delay of ≥ 10 days was not associated with a higher EBV DNA elevation rate (12.5% vs. 6.8%, OR = 1.94 [95% CI = 0.70-5.40], P = 0.20), or worse 1-year DFS (93.8% vs. 97.1%, HR = 3.73 [95% CI = 0.86-16.14], P = 0.059), compared with delay of < 10 days. Multivariable analyses showed RT delay of ≥ 6 days remained an independent adverse factor for both EBV DNA elevation and DFS. CONCLUSION: To ensure treatment efficacy for patients with nonmetastatic NPC, initiation of RT should not be delayed by more than 6 days; the effect of chemotherapy delay requires further investigation.

14.
Oral Oncol ; 134: 106140, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36183501

RESUMO

OBJECTIVES: To develop and validate a joint model for dynamic prediction of overall survival (OS) in nasopharyngeal carcinoma (NPC) based on longitudinal post-treatment plasma cell-free Epstein-Barr virus (cfEBV) DNA load. PATIENTS AND METHODS: We analyzed 695 patients with non-metastatic NPC and detectable post-treatment cfEBV DNA load who did not receive adjuvant therapy. We fitted the trajectories of post-treatment cfEBV DNA load as a function of time into a linear mixed-effect model and fitted a Cox regression model with covariates including age, T and N stages, and lactate dehydrogenase level. Finally, we combined both via joint modeling to develop and validate our dynamic model. RESULTS: A strong positive correlation was found between the individual longitudinal post-treatment cfEBV DNA load and the risk of death from any cause (P < 0.001). We developed a joint model capable of providing subject-specific dynamic prediction of conditional OS based on the evolution of the individual plasma cfEBV DNA load trajectory. The joint model showed reliable performance in both training and validation cohorts, with a large area under the curve (interquartile range [IQR]: training cohort, 0.775-0.850; validation cohort, 0.826-0.900) and low prediction errors (IQR: training cohort, 0.017-0.078; validation cohort, 0.034 -0.071). An increasing amount of data on cfEBV DNA load was associated with better model performance. CONCLUSION: Our model provided reliable subject-specific dynamic prediction of conditional OS, which could help guide individualized post-treatment surveillance, risk stratification, and management of NPC in the future.


Assuntos
Infecções por Vírus Epstein-Barr , Neoplasias Nasofaríngeas , DNA Viral/genética , Infecções por Vírus Epstein-Barr/complicações , Herpesvirus Humano 4/genética , Humanos , Lactato Desidrogenases , Carcinoma Nasofaríngeo/patologia , Neoplasias Nasofaríngeas/patologia , Prognóstico
15.
Lung ; 200(5): 579-589, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36156139

RESUMO

OBJECTIVE: Endogenous adenosine 5'-monophosphate (AMP), acetylcholine (ACh), and histamine (HA) are known to be important in bronchial contraction, but their clinical relevance to asthma is poorly understood. We aimed to quantify endogenous AMP, ACh, and HA in induced sputum samples and explore their relationships with asthma control and exacerbations. METHODS: 20 healthy subjects and 112 asthmatics underwent clinical assessment, sputum induction, and blood sampling. The level of asthma control was determined by the asthma control test (ACT) questionnaire. Asthma exacerbation was evaluated according to the criteria of the American Thoracic Society/European Respiratory Society. Levels of AMP, ACh, and HA in sputum were measured by liquid chromatography coupled to tandem mass spectrometry. IL-ß, IL-4, IL-5, IL-6, IL-8, IL-13, IL-17A, TNF-α, IFN-γ, and macrophage-derived chemokine (MDC) were also measured. RESULTS: Compared to healthy controls, asthmatics had higher levels of HA, lower levels of ACh, and similar levels of AMP in induced sputum samples. Compared to controlled asthma (n = 54), uncontrolled asthma (n = 58) showed higher AMP levels (P = 0.002), but similar HA and ACh levels. AMP was negatively correlated with ACT scores (r = - 0.348) and asthma quality of life questionnaire scores (r = - 0.188) and positively correlated with blood monocytes percentage (r = 0.195), sputum MDC (r = 0.214), and IL-6 levels (r = 0.196). Furthermore, AMP was associated with an increased risk of exacerbations in the preceding year. CONCLUSION: Endogenous AMP, but not ACh or HA, was associated with asthma control, quality of life, and exacerbations in the previous year, which indicates that AMP could be a clinically useful biomarker of asthma.


Assuntos
Asma , Interleucina-17 , Acetilcolina , Adenosina , Monofosfato de Adenosina , Biomarcadores , Quimiocina CCL22 , Histamina , Humanos , Interleucina-13 , Interleucina-4 , Interleucina-5 , Interleucina-6 , Interleucina-8/análise , Controle de Qualidade , Qualidade de Vida , Escarro , Fator de Necrose Tumoral alfa
16.
J Control Release ; 350: 841-856, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36096366

RESUMO

Melanoma is a malignant skin cancer that is prone to metastasis in the early stage and has a poor prognosis. Immunomodulatory therapy for melanoma has been a hot research topic in recent years. However, low immune cell infiltration and loss of tumor immunogenicity may occur in tumors, resulting in low response rates to immunotherapy. Thus, immunomodulatory therapy is usually used in combination with chemotherapy and radiotherapy. Development of combined therapeutic strategies with low systemic toxicity, high immune responsiveness and long-term inhibition of metastasis and recurrence of melanoma is the goal of current research. In this study, the insoluble immune adjuvant imiquimod (R837) was prepared as nanocrystals and coated with polydopamine (PDA) to form R837@PDA, which was then loaded into chitosan hydrogel (CGP) to form the drug-loaded gel system, R837@PDA@CGP (RPC), to combine immunomodulation effects, induction of immunogenic cell death (ICD) effects and immune-enhancement effects. After treatment with RPC, ICD in melanoma was induced, and the infiltration rate of cytotoxic T cells (CTLs) in melanoma was also significantly enhanced, which turned the tumor itself into an in situ vaccine and boosted the cancer-immunity cycle at the tumor site. Therefore, melanoma growth, metastasis and recurrence were notably inhibited.


Assuntos
Quitosana , Hipertermia Induzida , Melanoma , Nanopartículas , Linhagem Celular Tumoral , Humanos , Hidrogéis , Imiquimode/química , Imunoterapia/métodos , Melanoma/tratamento farmacológico , Melanoma/secundário , Nanopartículas/química
17.
Cell Mol Gastroenterol Hepatol ; 14(6): 1257-1267, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36089244

RESUMO

Neutrophils are the most abundant leukocyte population in the human circulatory system and are rapidly recruited to sites of inflammation. Neutrophils play a multifaceted role in intestinal inflammation, as they contribute to the elimination of invading pathogens. Recently, their role in epithelial restitution has been widely recognized; however, they are also associated with bystander tissue damage. The intestinal epithelium provides a physical barrier to prevent direct contact of luminal contents with subepithelial tissues, which is extremely important for the maintenance of intestinal homeostasis. Numerous studies have demonstrated that transepithelial migration of neutrophils is closely related to disease symptoms and disruption of crypt architecture in inflammatory bowel disease and experimental colitis. There has been growing interest in how neutrophils interact with the epithelium under inflammatory conditions. Most studies focus on the effects of neutrophils on intestinal epithelial cells; however, the effects of intestinal epithelial cells on neutrophils during intestinal inflammation need to be well-established. Based on these data, we have summarized recent articles on the role of neutrophil-epithelial interactions in intestinal inflammation, particularly highlighting the epithelium-derived molecular regulators that mediate neutrophil recruitment, transepithelial migration, and detachment from the epithelium, as well as the functional consequences of their crosstalk. A better understanding of these molecular events may help develop novel therapeutic targets for mitigating the deleterious effects of neutrophils in inflammatory bowel disease.


Assuntos
Doenças Inflamatórias Intestinais , Neutrófilos , Humanos , Mucosa Intestinal , Células Epiteliais , Inflamação
18.
Int J Mol Sci ; 23(15)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35897813

RESUMO

The peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) is a critical transcriptional coactivator that maintains metabolic homeostasis and energy expenditure by cooperating with various transcription factors. Recent studies have shown that PGC1α deficiency promotes lung cancer metastasis to the bone through activation of TCF4 and TWIST1-mediated epithelial-mesenchymal transition (EMT), which is suppressed by the inhibitor of DNA binding 1 (ID1); however, it is not clear which transcription factor participates in PGC1α-mediated EMT and lung cancer metastasis. Here, we identified forkhead box A1 (FOXA1) as a potential transcription factor that coordinates with PGC1α and ID1 for EMT gene expression using transcriptome analysis. Cooperation between FOXA1 and PGC1α inhibits promoter occupancy of TCF4 and TWIST1 on CDH1 and CDH2 proximal promoter regions due to increased ID1, consequently regulating the expression of EMT-related genes such as CDH1, CDH2, VIM, and PTHLH. Transforming growth factor beta 1 (TGFß1), a major EMT-promoting factor, was found to decrease ID1 due to the suppression of FOXA1 and PGC1α. In addition, ectopic expression of ID1, FOXA1, and PGC1α reversed TGFß1-induced EMT gene expression. Our findings suggest that FOXA1- and PGC1α-mediated ID1 expression involves EMT by suppressing TCF4 and TWIST1 in response to TGFß1. Taken together, this transcriptional framework is a promising molecular target for the development of therapeutic strategies for lung cancer metastasis.


Assuntos
Transição Epitelial-Mesenquimal , Neoplasias Pulmonares , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Fator 3-alfa Nuclear de Hepatócito/genética , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Regiões Promotoras Genéticas , Fator de Transcrição 4/metabolismo , Fatores de Transcrição/metabolismo , Proteína 1 Relacionada a Twist/genética , Proteína 1 Relacionada a Twist/metabolismo
19.
Life Sci ; 306: 120810, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35850243

RESUMO

AIMS: lncRNA ANRIL expression is dysregulated in many human cancers and is thus a useful prognostic marker for cancer patients. However, whether ANRIL is involved in drug resistance in triple-negative breast cancer (TNBC) has not yet been investigated. MAIN METHODS: A luciferase reporter assay was conducted to verify the binding between miR-125a and ANRIL. RT-PCR and western blotting were performed to detect the expression of miR-125a, ANRIL, and ENO1. Glycolysis stress was assessed using the Seahorse extracellular flux analyzer. Functional studies were performed using both in vitro and in vivo xenograft models. KEY FINDINGS: ANRIL was markedly upregulated in both patients with TNBC and TNBC cell lines. Knockdown of ANRIL increased the cytotoxic effect of ADR and repressed cellular glycolytic activity in TNBC cells. Mechanistic analysis showed that ANRIL may act as a competing endogenous RNA of miR-125a to relieve the repressive effect of miR-125a on its target glycolytic enzyme enolase (ENO1). Notably, 2-deoxy-glucose attenuated ANRIL-induced increase in drug resistance in TNBC cells. SIGNIFICANCE: These results indicate that knockdown of ANRIL plays an active role in overcoming drug resistance in TNBC by inhibiting glycolysis through the miR-125a/ENO1 pathway, which may be useful for the development of novel therapeutic targets for treating patients with TNBC, especially those with drug resistance.


Assuntos
Resistencia a Medicamentos Antineoplásicos , RNA Longo não Codificante/metabolismo , Neoplasias de Mama Triplo Negativas , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Glicólise , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética
20.
Front Oncol ; 12: 870315, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35664750

RESUMO

Purpose: The aim of this study was to identify the efficacy of diffusion kurtosis imaging (DKI) in tracking and monitoring the dynamic change of parotid glands (PGs), submandibular glands (SMGs), sublingual glands (SLGs), and acute xerostomia in nasopharyngeal carcinoma (NPC) patients treated with induction chemotherapy (IC) plus concurrent chemoradiotherapy (CCRT). Methods: The prospective study recruited 42 participants treated with IC+CCRT. All patients underwent DKI scanning six times: before IC, before RT, in the middle of the RT course, immediately after RT, and 1 and 3 months post-RT. Mean diffusion coefficient (MD) and mean kurtosis (MK) of PG, SMG, SLG, saliva flow rate measured under resting (uSFR) and stimulated condition (sSFR), and xerostomia questionnaire (XQ) scores were recorded. Results: At each time point, sSFR was significantly higher than uSFR (p < 0.05 for all). MD of the salivary glands and XQ scores increased over time while MK, uSFR, and sSFR decreased. After IC, the significant differences were detected in MD and MK of bilateral SMG and MK of the left SLG (p < 0.05 for all), but not in MD and MK of PG, uSFR, sSFR, and XQ scores. After RT, sSFR at 1m-RT decreased significantly (p = 0.03) while no significant differences were detected in uSFR and XQ scores. Moderate-strong correlations were detected in ΔMD-PG-R%, ΔMK-PG-R%, ΔMD-PG-L%, ΔMK-PG-L%, ΔMD-SMG-R%, ΔMK-SMG-R%, ΔMD-SMG-L%, ΔMK-SMG-L%, and ΔMD-SLG-R%, with correlation coefficients (p < 0.05 for all) ranging from 0.401 to 0.714. ΔuSFR% was correlated with ΔMD-SMG% (p = 0.01, r = -0.39), ΔMD-SLG% (p < 0.001, r = -0.532), and ΔMK-SMG% (p < 0.001, r = -0.493). ΔsSFR% correlated with ΔMD-PG% (p = 0.001, r = -0.509), ΔMD-SMG% (p = 0.015, r = -0.221), and ΔMK-PG% (p < 0.001, r = 0.524). ΔXQ% was only correlated with ΔMK-PG% (p = 0.004, r = 0.433). Conclusion: DKI is a promising tool for tracking and monitoring the acute damage of PG, SMG, and SLG induced by IC+CCRT in NPC patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA