Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Int J Mol Sci ; 24(19)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37834202

RESUMO

The human zinc finger protein 521 (ZNF521) is a co-transcriptional factor with multiple recognized regulatory functions in a range of normal, cancer and stem cell compartments. ZNF521 regulates proliferation, progression and CSC (cancer stem cell) compartments in human ovarian cancer (hOC), which is a very aggressive and late-diagnosed female tumor. Two other important regulators of hOC are the NRF2 and NOTCH signaling pathways. In the present paper, the mRNA and protein levels of ZNF521 were correlated with those of the NRF2-NOTCH signaling components in two different hOC cell lines and in a public dataset of 381 hOC patients. The data show that high levels of ZNF521 significantly increase NRF2-NOTCH signaling expression; conversely, the silencing of ZNF521 impairs NRF2-NOTCH signaling. This experimental work shows that, in hOC, different levels of ZNF521 modulate the NRF2-NOTCH signaling pathway and also influences hOC CSC properties.


Assuntos
Fator 2 Relacionado a NF-E2 , Neoplasias Ovarianas , Feminino , Humanos , Linhagem Celular Tumoral , Regulação da Expressão Gênica , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Neoplasias Ovarianas/genética , Receptores Notch/genética , Receptores Notch/metabolismo , Transdução de Sinais , Dedos de Zinco
2.
Int J Mol Sci ; 24(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36614279

RESUMO

Oleuropein plays a key role as a pro-oxidant as well as an antioxidant in cancer. In this study, the activity of oleuropein, in an in vitro model of ovarian (OCCs) and breast cancer cells (BCCs) was investigated. Cell viability and cell death were analyzed. Oxidative stress was measured by CM-H2DCFDA flow cytometry assay. Mitochondrial dysfunction was evaluated based on mitochondrial reactive oxygen species (ROS) and GPX4 protein levels. Further, the effects on iron metabolism were analyzed by measuring the intracellular labile iron pool (LIP). We confirmed that high doses of oleuropein show anti-proliferative and pro-apoptotic activity on HEY and MCF-7 cells. Moreover, our results indicate that low doses of oleuropein impair cell viability without affecting the mortality of cells, and also decrease the LIP and ROS levels, keeping them unchanged in MCF-7 cells. For the first time, our data show that low doses of oleuropein reduce erastin-mediated cell death. Interestingly, oleuropein decreases the levels of intracellular ROS and LIP in OCCs treated with erastin. Noteworthily, we observed an increased amount of ROS scavenging enzyme GPX4 together with a consistent reduction in mitochondrial ROS, confirming a reduction in oxidative stress in this model.


Assuntos
Antioxidantes , Neoplasias Ovarianas , Humanos , Feminino , Antioxidantes/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Iridoides/farmacologia , Glucosídeos Iridoides/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Ferro
3.
Int J Mol Sci ; 23(21)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36361777

RESUMO

The H Ferritin subunit (FTH1), as well as regulating the homeostasis of intracellular iron, is involved in complex pathways that might promote or inhibit carcinogenesis. This function may be mediated by its ability to interact with different molecules. To gain insight into the FTH1 interacting molecules, we analyzed its interactome in HEK293T cells. Fifty-one proteins have been identified, and among them, we focused our attention on a member of the peroxiredoxin family (PRDX6), an antioxidant enzyme that plays an important role in cell proliferation and in malignancy development. The FTH1/PRDX6 interaction was further supported by co-immunoprecipitation, in HEK293T and H460 cell lines and by means of computational methods. Next, we demonstrated that FTH1 could inhibit PRDX6-mediated proliferation and migration. Then, the results so far obtained suggested that the interaction between FTH1/PRDX6 in cancer cells might alter cell proliferation and migration, leading to a less invasive phenotype.


Assuntos
Apoferritinas , Peroxirredoxina VI , Humanos , Apoferritinas/genética , Peroxirredoxina VI/metabolismo , Células HEK293 , Proliferação de Células , Ferro/metabolismo
4.
Front Oncol ; 12: 868351, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35433479

RESUMO

Objectives: Developing novel therapeutic approaches to defeat chemoresistance is the major goal of ovarian cancer research. Induction of ferroptosis has shown promising antitumor effects in ovarian cancer cells, but the existence of still undefined genetic and metabolic determinants of susceptibility has so far limited the application of ferroptosis inducers in vivo. Methods: Erastin and/or the iron compound ferlixit were used to trigger ferroptosis in HEY, COV318, PEO4, and A2780CP ovarian cancer cell lines. Cell viability and cell death were measured by MTT and PI flow cytometry assay, respectively. The "ballooning" phenotype was tested as ferroptosis specific morphological feature. Mitochondrial dysfunction was evaluated based on ultrastructural changes, mitochondrial ROS, and mitochondrial membrane polarization. Lipid peroxidation was tested through both C11-BODIPY and malondialdehyde assays. VDAC2 and GPX4 protein levels were quantified as additional putative indicators of mitochondrial dysfunction or lipid peroxidation, respectively. The effect of erastin/ferlixit treatments on iron metabolism was analyzed by measuring intracellular labile iron pool and ROS. FtH and NCOA4 were measured as biomarkers of ferritinophagy. Results: Here, we provide evidence that erastin is unable to induce ferroptosis in a series of ovarian cancer cell lines. In HEY cells, provided with a high intracellular labile iron pool, erastin treatment is accompanied by NCOA4-mediated ferritinophagy and mitochondrial dysfunction, thus triggering ferroptosis. In agreement, iron chelation counteracts erastin-induced ferroptosis in these cells. COV318 cells, with low baseline intracellular labile iron pool, appear resistant to erastin treatment. Notably, the use of ferlixit sensitizes COV318 cells to erastin through a NCOA4-independent intracellular iron accumulation and mitochondrial dysfunction. Ferlixit alone mimics erastin effects and promotes ferroptosis in HEY cells. Conclusion: This study proposes both the baseline and the induced intracellular free iron level as a significant determinant of ferroptosis sensitivity and discusses the potential use of ferlixit in combination with erastin to overcome ferroptosis chemoresistance in ovarian cancer.

5.
Hum Mol Genet ; 30(22): 2100-2109, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34181020

RESUMO

The zinc finger protein ZNF224 plays a dual role in cancer, operating as both tumour suppressor and oncogenic factor depending on cellular and molecular partners. In this research we investigated the role of ZNF224 in melanoma, a highly invasive and metastatic cancer, and provided evidence for the involvement of ZNF224 in the TGF-ß signalling as a mediator of the TGF-ß pro-oncogenic function. Our results showed that ZNF224, whose expression increased in melanoma cell lines after TGF-ß stimulation, potentiated the activation induced by TGF-ß on its target genes involved in epithelial-mesenchymal transition (EMT). Accordingly, overexpression of ZNF224 enhanced the tumourigenic properties of melanoma cells, promoting cell proliferation and invasiveness, whereas ZNF224 knockdown had the opposite effect. Moreover, ZNF224 positively modulates the expression of TGF-ß itself and its type 1 and 2 receptors (TßR1 and TßR2), thus highlighting a possible mechanism by which ZNF224 could enhance the endogenous TGFß/Smad signalling. Our findings unveil a positive regulatory loop between TGF-ß and ZNF224 to promote EMT, consequently increasing the tumour metastatic potential.


Assuntos
Melanoma/etiologia , Melanoma/metabolismo , Proteínas Repressoras/genética , Fator de Crescimento Transformador beta/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Suscetibilidade a Doenças , Regulação Neoplásica da Expressão Gênica , Humanos , Melanoma/patologia , Proteínas Repressoras/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/genética
6.
Cells ; 9(12)2020 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-33260500

RESUMO

Ferritin, the principal intracellular iron-storage protein localized in the cytoplasm, nucleus, and mitochondria, plays a major role in iron metabolism. The encoding ferritin genes are members of a multigene family that includes some pseudogenes. Even though pseudogenes have been initially considered as relics of ancient genes or junk DNA devoid of function, their role in controlling gene expression in normal and transformed cells has recently been re-evaluated. Numerous studies have revealed that some pseudogenes compete with their parental gene for binding to the microRNAs (miRNAs), while others generate small interference RNAs (siRNAs) to decrease functional gene expression, and still others encode functional mutated proteins. Consequently, pseudogenes can be considered as actual master regulators of numerous biological processes. Here, we provide a detailed classification and description of the structural features of the ferritin pseudogenes known to date and review the recent evidence on their mutual interrelation within the complex regulatory network of the ferritin gene family.


Assuntos
Ferritinas/genética , Neoplasias/genética , Oxirredutases/genética , Pseudogenes/genética , Animais , Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/genética , Redes Reguladoras de Genes/genética , Humanos , MicroRNAs/genética , RNA Interferente Pequeno/genética
7.
Front Oncol ; 10: 698, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32432042

RESUMO

The cell-microenvironment communication is essential for homing of hematopoietic stem cells in stromal niches. Recent evidences support the involvement of epithelial-to-mesenchymal (EMT) process in hematopoietic stem cell homeostasis as well as in leukemia cells invasiveness and migration capability. Here, we demonstrate that the alteration of iron homeostasis and the consequent increase of redox metabolism, mediated by the stable knock down of ferritin heavy chain (FtH), enhances the expression of CXCR4 in K562 erythroleukemia cells, thus promoting CXCL12-mediated motility. Indeed, addition of the CXCR4 receptor antagonist AMD3100 reverts this effect. Upon FtH knock down K562 cells also acquire an "EMT-like" phenotype, characterized by the increase of Snail, Slug and Vimentin with the parallel loss of E-cadherin. By using fibronectin as substrate, the cell adhesion assay further shows a reduction of cell adhesion capability in FtH-silenced K562 cells. Accordingly, confocal microscopy shows that adherent K562 control cells display a variety of protrusions while FtH-silenced K562 cells remain roundish. These phenomena are largely due to the reactive oxygen species (ROS)-mediated up-regulation of HIF-1α/CXCR4 axis which, in turn, promotes the activation of NF-κB and the enhancement of EMT features. These data are confirmed by treatments with either N-acetylcysteine (NAC) or AMD3100 or NF-κB inhibitor IκB-alpha which revert the FtH-silenced K562 invasive phenotype. Overall, our findings demonstrate the existence of a direct relationship among iron metabolism, redox homeostasis and EMT in the hematological malignancies. The effects of FtH dysregulation on CXCR4/CXCL12-mediated K562 cell motility extend the meaning of iron homeostasis in the leukemia cell microenvironment.

8.
Front Immunol ; 10: 224, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30873154

RESUMO

The ability of pathogens to sequester iron from their host cells and proteins affects their virulence. Moreover, iron is required for various innate host defense mechanisms as well as for acquired immune responses. Therefore, intracellular iron concentration may influence the interplay between pathogens and immune system. Here, we investigated whether changes in iron concentrations and intracellular ferritin heavy chain (FTH) abundance may modulate the expression of Major Histocompatibility Complex molecules (MHC), and susceptibility to Natural Killer (NK) cell cytotoxicity. FTH downregulation, either by shRNA transfection or iron chelation, led to MHC surface reduction in primary cancer cells and macrophages. On the contrary, mouse embryonic fibroblasts (MEFs) from NCOA4 null mice accumulated FTH for ferritinophagy impairment and displayed MHC class I cell surface overexpression. Low iron concentration, but not FTH, interfered with IFN-γ receptor signaling, preventing the increase of MHC-class I molecules on the membrane by obstructing STAT1 phosphorylation and nuclear translocation. Finally, iron depletion and FTH downregulation increased the target susceptibility of both primary cancer cells and macrophages to NK cell recognition. In conclusion, the reduction of iron and FTH may influence the expression of MHC class I molecules leading to NK cells activation.


Assuntos
Apoferritinas/metabolismo , Citotoxicidade Imunológica/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Ferro/metabolismo , Células Matadoras Naturais/imunologia , Animais , Apoferritinas/genética , Linhagem Celular Tumoral , Células Cultivadas , Citotoxicidade Imunológica/genética , Desferroxamina/farmacologia , Embrião de Mamíferos/citologia , Fibroblastos/citologia , Fibroblastos/imunologia , Fibroblastos/metabolismo , Expressão Gênica/efeitos dos fármacos , Células HeLa , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Interferon gama/farmacologia , Células K562 , Células Matadoras Naturais/metabolismo , Células MCF-7 , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Coativadores de Receptor Nuclear/genética , Coativadores de Receptor Nuclear/metabolismo , Interferência de RNA , Sideróforos/farmacologia
9.
Oncotarget ; 9(29): 20409-20425, 2018 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-29755661

RESUMO

The objective of this study was to determine the feasibility to detect copy number alterations in colon cancer samples using Next Generation Sequencing data and to elucidate the association between copy number alterations in specific genes and the development of cancer in different colon segments. We report the successful detection of somatic changes in gene copy number in 37 colon cancer patients by analysis of sequencing data through Amplicon CNA Algorithm. Overall, we have found a total of 748 significant copy number alterations in 230 significant genes, of which 143 showed CN losses and 87 showed CN gains. Validation of results was performed on 20 representative genes by quantitative qPCR and/or immunostaining. By this analysis, we have identified 4 genes that were subjected to copy number alterations in tumors arising in all colon segments (defined "common genes") and the presence of copy number alterations in 14 genes that were significantly associated to one specific site (defined "site-associated genes"). Finally, copy number alterations in ASXL1, TSC1 and IL7R turned out to be clinically relevant since the loss of TSC1 and IL7R was associated with advanced stages and/or reduced survival whereas copy number gain of ASXL1 was associated with good prognosis.

11.
PLoS One ; 11(9): e0163078, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27657916

RESUMO

Both the methylxanthine caffeine and the heavy subunit of ferritin molecule (FHC) are able to control the proliferation rate of several cancer cell lines. While caffeine acts exclusively as a negative modulator of cell proliferation, FHC might reduce or enhance cell viability depending upon the different cell type. In this work we have demonstrated that physiological concentrations of caffeine reduce the proliferation rate of H460 cells: along with the modulation of p53, pAKT and Cyclin D1, caffeine also determines a significant FHC up-regulation through the activation of its transcriptional efficiency. FHC plays a central role in the molecular pathways modulated by caffeine, ending in a reduced cell growth, since its specific silencing by siRNA almost completely abolishes caffeine effects on H460 cell proliferation. These results allow the inclusion of ferritin heavy subunits among the multiple molecular targets of caffeine and open the way for studying the relationship between caffeine and intracellular iron metabolism.

12.
Oncotarget ; 7(38): 62019-62033, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27566559

RESUMO

OBJECTIVES: Ferritin is the major intracellular iron storage protein essential for maintaining the cellular redox status. In recent years ferritin heavy chain (FHC) has been shown to be involved also in the control of cancer cell growth. Analysis of public microarray databases in ovarian cancer revealed a correlation between low FHC expression levels and shorter survival. To better understand the role of FHC in cancer, we have silenced the FHC gene in SKOV3 cells. RESULTS: FHC-KO significantly enhanced cell viability and induced a more aggressive behaviour. FHC-silenced cells showed increased ability to form 3D spheroids and enhanced expression of NANOG, OCT4, ALDH and Vimentin. These features were accompanied by augmented expression of SCD1, a major lipid metabolism enzyme. FHC apparently orchestrates part of these changes by regulating a network of miRNAs. METHODS: FHC-silenced and control shScr SKOV3 cells were monitored for changes in proliferation, migration, ability to propagate as 3D spheroids and for the expression of stem cell and epithelial-to-mesenchymal-transition (EMT) markers. The expression of three miRNAs relevant to spheroid formation or EMT was assessed by q-PCR. CONCLUSIONS: In this paper we uncover a new function of FHC in the control of cancer stem cells.


Assuntos
Apoferritinas/metabolismo , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Células-Tronco Neoplásicas/metabolismo , Neoplasias Ovarianas/metabolismo , Aldeído Desidrogenase/metabolismo , Família Aldeído Desidrogenase 1 , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Feminino , Inativação Gênica , Humanos , Metabolismo dos Lipídeos , Células MCF-7 , MicroRNAs/metabolismo , Proteína Homeobox Nanog/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Neoplasias Ovarianas/diagnóstico , Prognóstico , Retinal Desidrogenase , Estearoil-CoA Dessaturase/metabolismo , Vimentina/metabolismo
13.
PLoS One ; 10(6): e0129762, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26061043

RESUMO

BACKGROUND: Breast cancer (BC) is a leading cause of death among women. Among the major risk factors, an important role is played by familial history of BC. Germ-line mutations in BRCA1/2 genes account for most of the hereditary breast and/or ovarian cancers. Gene expression profiling studies have disclosed specific molecular signatures for BRCA1/2-related breast tumors as compared to sporadic cases, which might help diagnosis and clinical follow-up. Even though, a clear hallmark of BRCA1/2-positive BC is still lacking. Many diseases are correlated with quantitative changes of proteins in body fluids. Plasma potentially carries important information whose knowledge could help to improve early disease detection, prognosis, and response to therapeutic treatments. The aim of this study was to develop a comprehensive approach finalized to improve the recovery of specific biomarkers from plasma samples of subjects affected by hereditary BC. METHODS: To perform this analysis, we used samples from patients belonging to highly homogeneous population previously reported. Depletion of high abundant plasma proteins, 2D gel analysis, liquid chromatography-tandem mass spectrometry (LC-MS/MS) and bioinformatics analysis were used into an integrated approach to investigate tumor-specific changes in the plasma proteome of BC patients and healthy family members sharing the same BRCA1 gene founder mutation (5083del19), previously reported by our group, with the aim to identify specific signatures. RESULTS: The comparative analysis of the experimental results led to the identification of gelsolin as the most promising biomarker. CONCLUSIONS: Further analyses, performed using a panel of breast cancer cell lines, allowed us to further elucidate the signaling network that might modulate the expression of gelsolin in breast cancer.


Assuntos
Proteína BRCA1/genética , Neoplasias da Mama/genética , Proteoma/metabolismo , RNA Mensageiro/metabolismo , Proteína BRCA1/metabolismo , Neoplasias da Mama/sangue , Feminino , Humanos , Mutação , Proteoma/genética , RNA Mensageiro/genética
14.
PLoS One ; 10(3): e0122105, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25815883

RESUMO

In a previous study, we showed that the silencing of the heavy subunit (FHC) offerritin, the central iron storage molecule in the cell, is accompanied by a modification in global gene expression. In this work, we explored whether different FHC amounts might modulate miRNA expression levels in K562 cells and studied the impact of miRNAs in gene expression profile modifications. To this aim, we performed a miRNA-mRNA integrative analysis in K562 silenced for FHC (K562shFHC) comparing it with K562 transduced with scrambled RNA (K562shRNA). Four miRNAs, namely hsa-let-7g, hsa-let-7f, hsa-let-7i and hsa-miR-125b, were significantly up-regulated in silenced cells. The remarkable down-regulation of these miRNAs, following FHC expression rescue, supports a specific relation between FHC silencing and miRNA-modulation. The integration of target predictions with miRNA and gene expression profiles led to the identification of a regulatory network which includes the miRNAs up-regulated by FHC silencing, as well as91 down-regulated putative target genes. These genes were further classified in 9 networks; the highest scoring network, "Cell Death and Survival, Hematological System Development and Function, Hematopoiesis", is composed by 18 focus molecules including RAF1 and ERK1/2. We confirmed that, following FHC silencing, ERK1/2 phosphorylation is severely impaired and that RAF1 mRNA is significantly down-regulated. Taken all together, our data indicate that, in our experimental model, FHC silencing may affect RAF1/pERK1/2 levels through the modulation of a specific set of miRNAs and add new insights in to the relationship among iron homeostasis and miRNAs.


Assuntos
Apoferritinas/genética , Redes Reguladoras de Genes , MicroRNAs/genética , Apoferritinas/metabolismo , Linhagem Celular Tumoral , Humanos , Sistema de Sinalização das MAP Quinases , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Quinases raf/genética , Quinases raf/metabolismo
15.
Int J Gynecol Cancer ; 24(4): 649-58, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24614826

RESUMO

OBJECTIVE: The objectives of this study were to characterize the well-defined endometrial cancer (EC) type I (endometrioid [EEC] G1-G2) versus the prototype of EC type II (serous [ESC]) and to evaluate the expression of specific biomarkers differentially expressed between 2 well-defined types, in those EC subtypes (such as EEC G3) disputed between types I and II. METHODS: Data from 25 patients (10 EEC G1-G2, 8 EEC G3, 5 ESC, and 2 clear cell) submitted to the surgical treatment were collected. Two-dimensional electrophoresis and mass spectrometry (MS) analysis were performed on 5 EEC G1-G2 and 5 healthy endometrial samples of the same patients. Differentially expressed proteins, such as DJ-1, were validated by Western blot. In patients with EEC G1-G2, serum levels of DJ-1, an overexpressed oncoprotein related to EC pathogenesis and progression, were evaluated and then compared with levels identified in patients with ESC and healthy controls. The DJ-1 immunohistochemical (IHC) staining was performed on neoplastic and healthy endometrium collected from the same patients. The 8 stored samples of EEC G3 were submitted to DJ-1 IHC assays. RESULTS: The 2-dimensional electrophoresis analysis identified 1040 protein spots differentially expressed in EEC G1-G2 compared with healthy endometrium. Forty-two spots were subjected to liquid chromatography-MS/MS analysis. Thirty-three up-regulated (like an annexin 2 [ANXA2] shorter isoform, CAPG [macrophage-capping protein], DJ-1/PARK7) and 9 down-regulated (like calreticulin and ubiquitin carboxyl-terminal hydrolase isozyme L1) proteins were identified and validated by Western blot. A significant increase in serum DJ-1 levels of EEC G1-G2 versus the healthy controls and in ESC versus EEC patients was observed. DJ-1 IHC score was significantly higher in ESC versus those EEC G1-G2. In 3 cases of EEC G3, the DJ-1 expression was similar to the ESC subtype. CONCLUSIONS: The identification of proteins, such as DJ-1, differentially expressed, between well-defined EC types I and II allows to make a subtype-specific presurgical diagnosis and help surgeon to safely preoperatively choose a proper surgical treatment.


Assuntos
Adenocarcinoma de Células Claras/diagnóstico , Biomarcadores Tumorais/metabolismo , Cistadenocarcinoma Seroso/diagnóstico , Neoplasias do Endométrio/classificação , Neoplasias do Endométrio/diagnóstico , Endométrio/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Oncogênicas/metabolismo , Adenocarcinoma de Células Claras/metabolismo , Idoso , Idoso de 80 Anos ou mais , Western Blotting , Estudos de Casos e Controles , Cistadenocarcinoma Seroso/metabolismo , Neoplasias do Endométrio/metabolismo , Feminino , Seguimentos , Humanos , Técnicas Imunoenzimáticas , Pessoa de Meia-Idade , Gradação de Tumores , Estadiamento de Neoplasias , Prognóstico , Proteína Desglicase DJ-1
16.
Gene ; 535(2): 327-35, 2014 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-24239552

RESUMO

Ferritin is best known as the key molecule in intracellular iron storage, and is involved in several metabolic processes such as cell proliferation, differentiation and neoplastic transformation. We have recently demonstrated that the shRNA silencing of the ferritin heavy subunit (FHC) in a melanoma cell line is accompanied by a consistent modification of gene expression pattern leading to a reduced potential in terms of proliferation, invasiveness, and adhesion ability of the silenced cells. In this study we sought to define the repertoire of genes whose expression might be affected by FHC during the hemin-induced differentiation of the erythromyeloid cell line K562. To this aim, gene expression profiling was performed in four different sets of cells: i) wild type K562; ii) sh-RNA FHC-silenced K562; iii) hemin-treated wild-type K562; and iv) hemin-treated FHC-silenced K562. Statistical analysis of the gene expression data, performed by two-factor ANOVA, identified three distinct classes of transcripts: a) Class 1, including 657 mRNAs whose expression is modified exclusively during hemin-induced differentiation of K562 cells, independently from the FHC relative amounts; b) Class 2, containing a set of 70 mRNAs which are consistently modified by hemin and FHC-silencing; and c) Class 3, including 128 transcripts modified by FHC-silencing but not by hemin. Our data indicate that FHC may function as a modulator of gene expression during erythroid differentiation and add new findings to the knowledge of the complex gene network modulated during erythroid differentiation.


Assuntos
Ferritinas/genética , Perfilação da Expressão Gênica , Regulação Leucêmica da Expressão Gênica , Inativação Gênica , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Análise por Conglomerados , Biologia Computacional , Ferritinas/química , Ferritinas/metabolismo , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes , Hemina/metabolismo , Hemina/farmacologia , Humanos , Células K562 , Subunidades Proteicas/genética , Interferência de RNA , Transdução de Sinais
17.
Ann Ital Chir ; 85(6): 518-24, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25712919

RESUMO

OBJECTIVES: The aim of this study was to identify differentially expressed proteins in oral squamous carcinoma cells that could be potential prognosis-related cancer biomarkers. MATERIALS AND METHODS: We compared protein expression patterns from gingival squamous cellc carcinoma (GSCC) tissues and adjacent non-cancerous matched tissues by proteomic analysis using two-dimensional gel electrophoresis coupled to mass spectrometry (2D-PAGE/MS). RESULTS: Seventeen protein spots were found to be over-expressed and eight were under-expressed in cancerous tissue compared to the normal counterpart. Of these, annexin A2 and ezrin were validated by Western blot. We also demonstrated by immunohistochemistry that POSTN is highly expressed in the neoplastic tissues examined. Among the differentially expressed proteins, we focused our attention on Chloride intracellular channel 1 (CLIC1). CONCLUSION: The 2D-PAGE/MS-based proteomics appears an efficient approach in detecting and identifying differentially expressed proteins that might function as potential biomarkers and/or molecular targets for early cancer diagnosis and prognosis and that might contribute to a innovative therapeutic strategies in GSCC. However, further validation and functional studies are needed to confirm and to support these promising, still preliminary data. KEY WORDS: Cancer biomarkers, Oral squamous cell carcinoma, Proteomics.


Assuntos
Anexina A2/genética , Biomarcadores Tumorais/genética , Carcinoma de Células Escamosas/diagnóstico , Moléculas de Adesão Celular/genética , Proteínas do Citoesqueleto/genética , Eletroforese em Gel Bidimensional/métodos , Neoplasias Gengivais/diagnóstico , Espectrometria de Massas/métodos , Carcinoma de Células Escamosas/genética , Neoplasias Gengivais/genética , Humanos , Prognóstico , Proteômica/métodos
18.
PLoS One ; 8(3): e57781, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23483928

RESUMO

OBJECTIVES: We carried out a meta-analysis focusing on the relationship between length of AIB1 gene poly-Q repeat domain as a modifier of breast cancer (BC) susceptibility in patients with BRCA1 and BRCA2 mutation carriers. DATA SOURCES: We searched MEDLINE and EMBASE for all medical literature published until February, 2012. STUDY ELIGIBILITY CRITERIA: Studies were included in the meta-analysis if they met all the predetermined criteria, such as: (a) case-control or cohort studies; (b) the primary outcome was clearly defined as BC; (c) the exposure of interest measured was AIB1 polyglutamine repeat length genotype; (d) provided relative risk (RR) or odds ratio (OR) estimates and their 95% confidence intervals (CIs). SYNTHESIS METHODS: Two of the authors independently evaluated the quality of the studies included and extracted the data. Meta-analyses were performed for case-control and cohort studies separately. Heterogeneity was examined and the publication bias was assessed with a funnel plot for asymmetry. RESULT: 7 studies met our predetermined inclusion criteria and were included in the meta-analysis. Overall quality ratings of the studies varied from 0.36 to 0.77, with a median of 0.5. The overall RR estimates of 29/29 poly-Q repeats on risk of BC in BRCA1/2, BRCA1, and BRCA2, were always greater than 1.00; however, this effect was not statistically significant. In the meta-analysis of studies reporting the effect of 28/28 poly-Q repeats on risk of BC in BRCA1/2, BRCA1, and BRCA2, the overall RR decreased below 1.00; however, this effect was not statistically significant. Similar estimates were shown for at least 1 allele of ≤26 repeats. CONCLUSIONS: Genotypes of AIB1 polyglutamine polymorphism analyzed do not appear to be associated to a modified risk of BC development in BRCA1 and BRCA2 mutation carriers. Future research on length of poly-Q repeat domain and BC susceptibility should be discouraged and more promising potential sources of penetrance variation among BRCA1 and BRCA2 mutation carriers should be investigated.


Assuntos
Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias da Mama/genética , Mutação/genética , Coativador 3 de Receptor Nuclear/genética , Polimorfismo Genético , Sequências Repetitivas de Ácido Nucleico/genética , Feminino , Predisposição Genética para Doença , Heterozigoto , Humanos , Peptídeos/genética , Fatores de Risco
19.
J Proteome Res ; 10(12): 5444-53, 2011 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-22043922

RESUMO

Ferritin, the major intracellular iron-storage protein, is made of 24 subunits of two types, H and L. Besides regulating intracellular iron homeostasis, it has been found that ferritin, in particular the H subunit (FHC), is involved in different biological events such as cell differentiation and pathologic states (i.e., neurodegeneration and cancer). This study is aimed at investigating the whole-cell proteome of FHC-expressing and sh-RNA-silenced human metastatic melanoma cells (MM07(m)) in the attempt to identify and classify the highest number of proteins directly or indirectly controlled by the FHC. We identified about 200 differentially expressed proteins and classified them in clusters on the basis of their functions, as proteins involved in metabolic processes, cell adhesion, migration, and proliferation processes. Some of them have captured our attention because of their involvement in metabolic pathways related to tumor progression and metastasis. In vitro assays confirmed that the FHC-silenced MM07(m) cells are characterized by a decreased growth activity, a reduced invasiveness, and a reduced cell adhesion capability. Moreover, nude mice (CD1 nu/nu), subcutaneously injected with FHC-silenced MM07(m) cells, showed a remarkable 4-fold reduction of their tumor growth capacity compared to those who received the FHC-unsilenced MM07(m) counterpart. In conclusion, these data indicate that gene silencing technology, coupled to proteomic analysis, is a powerful tool for a better understanding of H ferritin signaling pathways and lend support to the hypothesis that specific targeting of this gene might be an attractive and potentially effective strategy for the management of metastatic melanoma.


Assuntos
Apoferritinas/genética , Inativação Gênica , Proteoma/análise , Animais , Apoferritinas/metabolismo , Adesão Celular , Moléculas de Adesão Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Lentivirus/genética , Lentivirus/metabolismo , Masculino , Melanoma Experimental , Metaboloma , Camundongos , Camundongos Nus , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Proteômica/métodos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Transfecção
20.
Cancer Lett ; 272(1): 40-52, 2008 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-18667268

RESUMO

Familial adenomatous polyposis (FAP) is one of the most important clinical hereditary forms of inherited susceptibility to colorectal cancer and is characterized by a high degree of phenotypic heterogeneity. We used a mass spectrometry driven-proteomic strategy to identify serum molecules differently expressed in FAP patients. The data obtained were subsequently processed by bioinformatic analysis and confirmed by Western blotting. Significant differences were highlighted in the expression of serum proteins of FAP patients. In particular, two proteins (alpha-2-HS-glycoprotein and apoliprotein D) were down-regulated (about 0.5- and 0.7-fold, respectively) in carpeting versus diffuse FAP patients and healthy donors, while alpha-2-antiplasmin was up-regulated (about 1.4-fold). Moreover, mass spectrometry approach enabled us to identify serum biomarkers specific for two distinct clinical form of FAP, i.e. carpeting and diffuse FAP. In particular, vitronectin was up-regulated (more than 1.4-fold) in diffuse FAP patients versus carpeting FAP and versus healthy donors, and two additional proteins (Haptoglobin and alpha-1-acid glycoprotein 1) were up-regulated in 2 out of 3 carpeting FAP patients. Our study suggests that mass spectrometry combined to a strong bioinformatics analysis is a valuable tool for the identification of quali/quantitative differences in the serum proteome of otherwise indistinguishable FAP phenotypes. Moreover, the definition of a proteomic profile, supported by the supervised classification, is a powerful and highly sensitive approach for the identification molecular signatures that are able to outperform the traditional disease markers and can therefore be efficiently applied for the diagnosis and clinical management of FAP patients.


Assuntos
Polipose Adenomatosa do Colo/genética , Apolipoproteínas D/genética , Proteínas Sanguíneas/genética , Neoplasias Colorretais Hereditárias sem Polipose/genética , DNA Glicosilases/genética , Perfilação da Expressão Gênica , Proteoma , Polipose Adenomatosa do Colo/sangue , Apolipoproteínas D/sangue , Western Blotting , Neoplasias Colorretais/genética , Predisposição Genética para Doença , Haptoglobinas/genética , Humanos , Imunoglobulina G/sangue , Espectrometria de Massas , Proteômica/métodos , Valores de Referência , Albumina Sérica/genética , alfa-2-Glicoproteína-HS
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA