Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 650(Pt 2): 2490-2498, 2019 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-30296769

RESUMO

By-products of mobile source combustion processes, such as those associated with gasoline- and diesel-powered engines, include direct emissions of particulate matter as well as precursors to particulate matter and ground-level ozone. Human exposure to fine particulate matter with an aerodynamic diameter smaller than 2.5 µm (PM2.5) is associated with increased incidence of premature mortality and morbidity outcomes. This study builds upon recent, detailed source-apportionment air quality modeling to project the health-related benefits of reducing PM2.5 from mobile sources across the contiguous U.S. in 2025. Updating a previously published benefits analysis approach, we develop national-level benefit per ton estimates for directly emitted PM2.5, SO2/pSO4, and NOX for 16 mobile source sectors spanning onroad vehicles, nonroad engines and equipment, trains, marine vessels, and aircraft. These benefit per ton estimates provide a reduced-form tool for estimating and comparing benefits across multiple mobile source emission scenarios and can be applied to assess the benefits of mobile source policies designed to improve air quality. We found the benefit per ton of directly emitted PM2.5 in 2025 ranges from $110,000 for nonroad agriculture sources to $700,000 for onroad light duty gas cars and motorcycles (in 2015 dollars and based on an estimate of PM-related mortality derived from the American Cancer Society cohort study). Benefit per ton values for SO2/pSO4 range from $52,000 for aircraft sources (including emissions from ground support vehicles) to $300,000 for onroad light duty diesel emissions. Benefit per ton values for NOX range from $2100 for C1 and C2 marine vessels to $7500 for "nonroad all other" mobile sources, including industrial, logging, and oil field sources. Benefit per ton estimates increase approximately 2.26-fold when using an alternative concentration response function to derive PM2.5-related mortality. We also report benefit per ton values for the eastern and western U.S. to account for broad spatial heterogeneity patterns in emissions reductions, population exposure and air quality benefits.

2.
Proc Natl Acad Sci U S A ; 115(38): 9592-9597, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30181279

RESUMO

Exposure to ambient fine particulate matter (PM2.5) is a major global health concern. Quantitative estimates of attributable mortality are based on disease-specific hazard ratio models that incorporate risk information from multiple PM2.5 sources (outdoor and indoor air pollution from use of solid fuels and secondhand and active smoking), requiring assumptions about equivalent exposure and toxicity. We relax these contentious assumptions by constructing a PM2.5-mortality hazard ratio function based only on cohort studies of outdoor air pollution that covers the global exposure range. We modeled the shape of the association between PM2.5 and nonaccidental mortality using data from 41 cohorts from 16 countries-the Global Exposure Mortality Model (GEMM). We then constructed GEMMs for five specific causes of death examined by the global burden of disease (GBD). The GEMM predicts 8.9 million [95% confidence interval (CI): 7.5-10.3] deaths in 2015, a figure 30% larger than that predicted by the sum of deaths among the five specific causes (6.9; 95% CI: 4.9-8.5) and 120% larger than the risk function used in the GBD (4.0; 95% CI: 3.3-4.8). Differences between the GEMM and GBD risk functions are larger for a 20% reduction in concentrations, with the GEMM predicting 220% higher excess deaths. These results suggest that PM2.5 exposure may be related to additional causes of death than the five considered by the GBD and that incorporation of risk information from other, nonoutdoor, particle sources leads to underestimation of disease burden, especially at higher concentrations.


Assuntos
Poluentes Atmosféricos/toxicidade , Exposição Ambiental/efeitos adversos , Carga Global da Doença/estatística & dados numéricos , Doenças não Transmissíveis/mortalidade , Material Particulado/toxicidade , Poluição do Ar/efeitos adversos , Teorema de Bayes , Estudos de Coortes , Saúde Global/estatística & dados numéricos , Humanos , Modelos de Riscos Proporcionais , Medição de Risco , Fatores de Tempo
3.
Environ Sci Technol ; 52(15): 8095-8103, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-30004688

RESUMO

Incomplete information regarding emissions from oil and natural gas production has historically made it challenging to characterize the air quality or air pollution-related health impacts for this sector in the United States. Using an emissions inventory for the oil and natural gas sector that reflects information regarding the level and distribution of PM2.5 and ozone precursor emissions, we simulate annual mean PM2.5 and summer season average daily 8 h maximum ozone concentrations with the Comprehensive Air-Quality Model with extensions (CAMx). We quantify the incidence and economic value of PM2.5 and ozone health related effects using the environmental Benefits Mapping and Analysis Program (BenMAP). We find that ambient concentrations of PM2.5 and ozone, and associated health impacts, are highest in a handful of states including Colorado, Pennsylvania, Texas and West Virginia. On a per-ton basis, the benefits of reducing PM2.5 precursor emissions from this sector vary by pollutant species, and range from between $6,300 and $320,000, while the value of reducing ozone precursors ranges from $500 to $8,200 in the year 2025 (2015$).


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Colorado , Humanos , Gás Natural , Material Particulado , Pennsylvania , Texas , Estados Unidos , West Virginia
4.
Air Qual Atmos Health ; 9(8): 961-972, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27867428

RESUMO

The effectiveness of regulatory actions designed to improve air quality is often assessed by predicting changes in public health resulting from their implementation. Risk of premature mortality from long-term exposure to ambient air pollution is the single most important contributor to such assessments and is estimated from observational studies generally assuming a log-linear, no-threshold association between ambient concentrations and death. There has been only limited assessment of this assumption in part because of a lack of methods to estimate the shape of the exposure-response function in very large study populations. In this paper, we propose a new class of variable coefficient risk functions capable of capturing a variety of potentially non-linear associations which are suitable for health impact assessment. We construct the class by defining transformations of concentration as the product of either a linear or log-linear function of concentration multiplied by a logistic weighting function. These risk functions can be estimated using hazard regression survival models with currently available computer software and can accommodate large population-based cohorts which are increasingly being used for this purpose. We illustrate our modeling approach with two large cohort studies of long-term concentrations of ambient air pollution and mortality: the American Cancer Society Cancer Prevention Study II (CPS II) cohort and the Canadian Census Health and Environment Cohort (CanCHEC). We then estimate the number of deaths attributable to changes in fine particulate matter concentrations over the 2000 to 2010 time period in both Canada and the USA using both linear and non-linear hazard function models.

5.
Risk Anal ; 36(9): 1718-36, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26742852

RESUMO

Designing air quality policies that improve public health can benefit from information about air pollution health risks and impacts, which include respiratory and cardiovascular diseases and premature death. Several computer-based tools help automate air pollution health impact assessments and are being used for a variety of contexts. Expanding information gathered for a May 2014 World Health Organization expert meeting, we survey 12 multinational air pollution health impact assessment tools, categorize them according to key technical and operational characteristics, and identify limitations and challenges. Key characteristics include spatial resolution, pollutants and health effect outcomes evaluated, and method for characterizing population exposure, as well as tool format, accessibility, complexity, and degree of peer review and application in policy contexts. While many of the tools use common data sources for concentration-response associations, population, and baseline mortality rates, they vary in the exposure information source, format, and degree of technical complexity. We find that there is an important tradeoff between technical refinement and accessibility for a broad range of applications. Analysts should apply tools that provide the appropriate geographic scope, resolution, and maximum degree of technical rigor for the intended assessment, within resources constraints. A systematic intercomparison of the tools' inputs, assumptions, calculations, and results would be helpful to determine the appropriateness of each for different types of assessment. Future work would benefit from accounting for multiple uncertainty sources and integrating ambient air pollution health impact assessment tools with those addressing other related health risks (e.g., smoking, indoor pollution, climate change, vehicle accidents, physical activity).

6.
Risk Anal ; 32(1): 81-95, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21627672

RESUMO

Ground-level ozone (O(3)) and fine particulate matter (PM(2.5)) are associated with increased risk of mortality. We quantify the burden of modeled 2005 concentrations of O(3) and PM(2.5) on health in the United States. We use the photochemical Community Multiscale Air Quality (CMAQ) model in conjunction with ambient monitored data to create fused surfaces of summer season average 8-hour ozone and annual mean PM(2.5) levels at a 12 km grid resolution across the continental United States. Employing spatially resolved demographic and concentration data, we assess the spatial and age distribution of air-pollution-related mortality and morbidity. For both PM(2.5) and O(3) we also estimate: the percentage of total deaths due to each pollutant; the reduction in life years and life expectancy; and the deaths avoided according to hypothetical air quality improvements. Using PM(2.5) and O(3) mortality risk coefficients drawn from the long-term American Cancer Society (ACS) cohort study and National Mortality and Morbidity Air Pollution Study (NMMAPS), respectively, we estimate 130,000 PM(2.5) -related deaths and 4,700 ozone-related deaths to result from 2005 air quality levels. Among populations aged 65-99, we estimate nearly 1.1 million life years lost from PM(2.5) exposure and approximately 36,000 life years lost from ozone exposure. Among the 10 most populous counties, the percentage of deaths attributable to PM(2.5) and ozone ranges from 3.5% in San Jose to 10% in Los Angeles. These results show that despite significant improvements in air quality in recent decades, recent levels of PM(2.5) and ozone still pose a nontrivial risk to public health.


Assuntos
Poluentes Atmosféricos/toxicidade , Ozônio/toxicidade , Material Particulado/toxicidade , Saúde Pública , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Simulação por Computador , Humanos , Modelos Teóricos , Mortalidade , Risco , Estados Unidos/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA