Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
AACE Clin Case Rep ; 8(6): 251-254, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36447824

RESUMO

Background/Objective: Although retinoid-associated central hypothyroidism has been reported on several occasions, there are very few studies on retinoid-associated central adrenal insufficiency. Here, we present the case of a patient with alitretinoin-induced central hypothyroidism and adrenal insufficiency. Case Report: An 86-year-old man with a diagnosis of cutaneous T-cell lymphoma, treated with oral alitretinoin 30 mg po daily, topical steroids, and ultraviolet light therapy presented to the emergency department with generalized weakness, decreased energy, orthostasis, and unexplained falls. Thyroid-stimulating hormone (TSH) was 0.31 mIU/L (normal range: 0.4-4.4) from 1.93 before alitretinoin therapy, whereas free thyroxine was 5.7 pmol/L (normal range: 8-18) and the AM cortisol was 40 nmol/L (normal range: 120-535); these values were suggestive of central hypothyroidism and adrenal insufficiency. Adrenocorticotropic hormone (ACTH) was not measured because of a laboratory error. Alitretinoin was stopped, and one dose of hydrocortisone 100mg IV was initiated, followed by maintenance doses of oral hydrocortisone 20mg qam and 10mg qpm. Levothyroxine (50µg ) daily was started 24 hours later. After stopping hydrocortisone for 24 hours, the AM cortisol and ACTH levels were 406 nmol/L and 2.18 pmol/L (normal range:1.6-13.9), respectively. He was discharged on thyroid hormone replacement therapy and glucocorticoids. Repeat thyroid function tests 6 weeks later showed a TSH of 0.4 mIU/L, and free thyroxine of 9.7 pmol/L. Discussion: Alitretinoin activates nuclear receptors called retinoic acid receptors and retinoid X-receptors. Retinoic acid receptors and retinoid X-receptors are widely expressed in the anterior pituitary gland. RXR-selective ligands such as retinoids can suppress TSH secretion, resulting in central hypothyroidism. Retinoids have also been shown to decrease ACTH secretion, which can result in central adrenal insufficiency. Conclusion: Although central adrenal insufficiency and hypothyroidism have not been commonly reported in patients taking retinoids, they should always be considered when caring for these patients.

2.
Endocr Pathol ; 29(4): 374-379, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30361844

RESUMO

Hyperparathyroidism, commonly observed in asymptomatic middle-aged women, with mild hypercalcemia, is usually caused by a benign adenoma. Some cases present with more severe manifestation and greater hypercalcemia. Within this spectrum, several familial/genetic associations have been discovered. While the majority are caused by benign disease, adenomas, or hyperplasia, a small proportion (< 1%) are associated with malignant tumors and present with more severe symptoms. Although usually sporadic, recent reports document various gene mutations that strongly predispose to the development of parathyroid carcinoma. An increasing number of cases of hyperparathyroidism, benign or malignant, require and benefit from genetic analysis. We describe a 25-year-old male with hyperparathyroidism presenting with a pathological fracture, brown tumors, hypercalcemia, and markedly elevated parathyroid hormone levels. There was no family history of hyperparathyroidism or jaw tumors. Surgical removal revealed a single large tumor confirmed to be malignant. Immunohistochemical analysis revealed the absence of parafibromin and decreased APC (adenomatosis polyposis coli) expression. Genetic analysis revealed a rare germline nonsense mutation (R76X) in the parafibromin gene, HRPT2/CDC73. Parathyroid carcinoma should be suspected as a cause of hyperparathyroidism when clinical manifestations are severe, particularly in young individuals, < 59 years. Immunohistochemistry may lead to suspicion for a germline mutation as a significant contributor despite absence of a family history. The discovery of a germline mutation in parathyroid carcinoma alters the clinical management of the index case and that of family members. Long-term follow-up studies of such patients are necessary to develop evidence-based clinical guidelines.


Assuntos
Hiperparatireoidismo/etiologia , Neoplasias das Paratireoides/genética , Proteínas Supressoras de Tumor/genética , Adulto , Predisposição Genética para Doença/genética , Mutação em Linhagem Germinativa , Humanos , Masculino , Neoplasias das Paratireoides/complicações
3.
Endocr Connect ; 7(5): 739-748, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29692348

RESUMO

It is not fully clarified whether insulin glargine, an analogue with a high affinity for insulin-like growth factor-1 receptor (IGF-1R), increases the risk for cancers that abundantly express IGF-1R such as breast cancer or some types of breast cancer. To gain insight into this issue, female Sprague-Dawley rats fed a high-fat diet were given the carcinogen N-methyl-N-nitrosourea and randomly assigned to vehicle (control), NPH (unmodified human insulin), glargine or detemir (n = 30 per treatment). Insulins were given subcutaneously (15 U/kg/day) 5 days a week. Mammary tumours were counted twice weekly, and after 6 weeks of treatment, extracted for analysis. None of the insulin-treated groups had increased mammary tumour incidence at any time compared with control. At 6 weeks, tumour multiplicity was increased with NPH or glargine (P < 0.05) and tended to be increased with detemir (P = 0.2); however, there was no difference among insulins (number of tumours per rat: control = 0.8 ± 0.1, NPH = 1.8 ± 0.3, glargine = 1.5 ± 0.4, detemir = 1.4 ± 0.4; number of tumours per tumour-bearing rat: control = 1.3 ± 0.1, NPH = 2.2 ± 0.4, glargine = 2.7 ± 0.5, detemir = 2.3 ± 0.5). IGF-1R expression in tumours was lower than that in Michigan Cancer Foundation-7 (MCF-7) cells, a cell line that shows greater proliferation with glargine than unmodified insulin. In rats, glargine was rapidly metabolised to M1 that does not have greater affinity for IGF-1R. In conclusion, in this model of oestrogen-dependent breast cancer in insulin-resistant rats, insulin and insulin analogues increased tumour multiplicity with no difference between insulin types.

4.
Am J Physiol Endocrinol Metab ; 314(3): E201-E205, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29089337

RESUMO

Recent controversy regarding the therapeutic potential of curcumin indicates the challenges to research in this field. Here, we highlight the investigations of curcumin and other plant-derived polyphenols that demonstrate their application to metabolic diseases, in particular, obesity and diabetes. Thus, a number of preclinical and clinical investigations have shown the beneficial effect of curcumin (and other dietary polyphenols) in attenuating body weight gain, improving insulin sensitivity, and preventing diabetes development in rodent models and prediabetic subjects. Other intervention studies with dietary polyphenols have also found improvements in insulin resistance. Recent studies suggest that the metabolic effects of curcumin/polyphenols are linked to changes in the gut microbiota. Thus, research into curcumin continues to provide novel insights into metabolic regulation that may ultimately translate into effective therapy.


Assuntos
Curcumina/farmacologia , Diabetes Mellitus/terapia , Metabolismo Energético/efeitos dos fármacos , Obesidade/terapia , Polifenóis/farmacologia , Animais , Curcumina/uso terapêutico , Diabetes Mellitus/metabolismo , Dieta , Humanos , Resistência à Insulina/fisiologia , Obesidade/metabolismo , Fitoterapia/métodos , Polifenóis/uso terapêutico , Transdução de Sinais/efeitos dos fármacos
5.
Am J Physiol Endocrinol Metab ; 313(3): E321-E334, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28679626

RESUMO

Bradykinin (BK) promotes insulin sensitivity and glucose uptake in adipocytes and other cell types. We demonstrated that in rat adipocytes BK enhances insulin-stimulated glucose transport via endothelial nitric oxide synthase, nitric oxide (NO) generation, and decreased activity of the mitogen-activated protein kinase (MAPK) JNK (c-Jun NH2-terminal kinase). In endothelial cells, NO increases soluble guanylate cyclase (sGC) activity, which, in turn, activates protein kinase G (PKG) by increasing cGMP levels. In this study, we investigated whether BK acts via the sGC-cGMP-PKG pathway to inhibit the negative effects of JNK on insulin signaling and glucose uptake in rat adipocytes. BK augmented cGMP concentrations. The BK-induced enhancement of insulin-stimulated glucose uptake was mimicked by the sGC activator YC-1 and a cell-permeable cGMP analog, CPT-cGMP, and inhibited by the sGC inhibitor ODQ and the PKG inhibitor KT 5823. Transfection of dominant-negative PKG reduced the BK augmentation of insulin-induced Akt phosphorylation. The activation of JNK and ERK1/2 by insulin was attenuated by BK, which was mediated by the sGC-cGMP-PKG pathway. Whereas insulin-stimulated phosphorylation of upstream activators of JNK and ERK, i.e., MKK4 and MEK1/2, was unaffected, BK augmented insulin-mediated induction of MKP-5 mRNA and protein levels. Furthermore, zaprinast, a phosphodiesterase inhibitor, enhanced cGMP and MKP-5 and prolonged the action of BK. These data indicate that BK enhances insulin action by inhibition of negative feedback by JNK and ERK via upregulation of MKP-5, mediated by the sGC-cGMP-PKG signaling pathway.


Assuntos
Adipócitos/efeitos dos fármacos , Bradicinina/farmacologia , Proteínas Quinases Dependentes de GMP Cíclico/efeitos dos fármacos , Fosfatases de Especificidade Dupla/efeitos dos fármacos , Resistência à Insulina , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Fosfatases da Proteína Quinase Ativada por Mitógeno/efeitos dos fármacos , RNA Mensageiro/efeitos dos fármacos , Adipócitos/metabolismo , Animais , Western Blotting , GMP Cíclico/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Fosfatases de Especificidade Dupla/genética , Fosfatases de Especificidade Dupla/metabolismo , Glucose/metabolismo , Guanilato Ciclase/efeitos dos fármacos , Guanilato Ciclase/metabolismo , Imunoprecipitação , Proteínas Quinases JNK Ativadas por Mitógeno/efeitos dos fármacos , Masculino , Fosfatases da Proteína Quinase Ativada por Mitógeno/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/efeitos dos fármacos , Óxido Nítrico Sintase Tipo III/metabolismo , Inibidores de Fosfodiesterase/farmacologia , Proteínas Proto-Oncogênicas c-akt/efeitos dos fármacos , Purinonas/farmacologia , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/efeitos dos fármacos
6.
J Nutr ; 145(10): 2300-7, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26338887

RESUMO

BACKGROUND: Long-term dietary curcumin (>12 wk) improves metabolic homeostasis in obese mice by sensitizing insulin signaling and reducing hepatic gluconeogenesis. Whether these occur only secondary to its chronic anti-inflammatory and antioxidative functions is unknown. OBJECTIVE: In this study, we assessed the insulin sensitization effect of short-term curcumin gavage in a rapid dexamethasone-induced insulin resistance mouse model, in which the chronic anti-inflammatory function is eliminated. METHODS: Six-week-old male C57BL/6 mice received an intraperitoneal injection of dexamethasone (100 mg/kg body weight) or phosphate-buffered saline every day for 5 d, with or without simultaneous curcumin gavage (500 mg/kg body weight). On day 7, insulin tolerance tests were performed. After a booster dexamethasone injection and curcumin gavage on day 8, blood glucose and insulin concentrations were measured. Liver tissues were collected on day 10 for quantitative polymerase chain reaction and Western blotting to assess gluconeogenic gene expression, insulin signaling, and the expression of fibroblast growth factor 21 (FGF21). Primary hepatocytes from separate, untreated C57BL/6 mice were used for testing the in vitro effect of curcumin treatment. RESULTS: Dexamethasone injection impaired insulin tolerance (P < 0.05) and elevated ambient plasma insulin concentrations by ~2.7-fold (P < 0.01). Concomitant curcumin administration improved insulin sensitivity and reduced hepatic gluconeogenic gene expression. The insulin sensitization effect of curcumin was demonstrated by increased stimulation of S473 phosphorylation of protein kinase B (P < 0.01) in the dexamethasone-treated mouse liver, as well as the repression of glucose production in primary hepatocytes (P < 0.001). Finally, curcumin gavage increased FGF21 expression by 2.1-fold in the mouse liver (P < 0.05) and curcumin treatment increased FGF21 expression in primary hepatocytes. CONCLUSION: These observations suggest that the early beneficial effect of curcumin intervention in dexamethasone-treated mice is the sensitization of insulin signaling, involving the stimulation of FGF21 production, a known insulin sensitizer.


Assuntos
Antioxidantes/uso terapêutico , Curcumina/uso terapêutico , Suplementos Nutricionais , Fatores de Crescimento de Fibroblastos/agonistas , Resistência à Insulina , Fígado/metabolismo , Estado Pré-Diabético/prevenção & controle , Animais , Antioxidantes/metabolismo , Glicemia/análise , Células Cultivadas , Curcumina/metabolismo , Dexametasona/antagonistas & inibidores , Dexametasona/toxicidade , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Glucocorticoides/antagonistas & inibidores , Glucocorticoides/toxicidade , Gluconeogênese/efeitos dos fármacos , Células Hep G2 , Humanos , Insulina/sangue , Fígado/efeitos dos fármacos , Fígado/imunologia , Fígado/patologia , Masculino , Camundongos Endogâmicos C57BL , Estado Pré-Diabético/induzido quimicamente , Estado Pré-Diabético/metabolismo , Estado Pré-Diabético/patologia , Distribuição Aleatória , Proteínas Recombinantes/metabolismo , Transdução de Sinais/efeitos dos fármacos
7.
Diabetes Metab Res Rev ; 31(1): 36-8, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25132618

RESUMO

Metformin is one of the most commonly used drugs to treat type 2 diabetes and is safe and effective. Its main mechanism of action is thought to be the activation of AMP-activated protein kinase (AMPK) via inhibition of mitochondrial ATP generation. Recent use of metformin as an 'insulin sensitizer' in women with polycystic ovarian syndrome to increase fertility has been successful and resulted in the chance observation that continued use during pregnancy appeared to be safe. There are few studies of metformin in animal models of diabetic pregnancy. However, some data have implicated fetal AMPK activation in neural tube defects. While a recent report suggests that metformin may not activate fetal AMPK, which is reassuring, studies in pregnant woman with gestational diabetes and type 2 diabetes, which are ongoing, require completion before we can conclude that its use in pregnancy is safe. Furthermore, follow-up of the offspring will be critical to determine whether such treatment decreases or increases the development of obesity and diabetes.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Gestacional/tratamento farmacológico , Metformina/uso terapêutico , Gravidez em Diabéticas/tratamento farmacológico , Feminino , Humanos , Hipoglicemiantes/uso terapêutico , Metformina/efeitos adversos , Síndrome do Ovário Policístico/tratamento farmacológico , Síndrome do Ovário Policístico/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo
8.
Am J Physiol Endocrinol Metab ; 307(1): E34-46, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24824652

RESUMO

Fat-induced hepatic insulin resistance plays a key role in the pathogenesis of type 2 diabetes in obese individuals. Although PKC and inflammatory pathways have been implicated in fat-induced hepatic insulin resistance, the sequence of events leading to impaired insulin signaling is unknown. We used Wistar rats to investigate whether PKCδ and oxidative stress play causal roles in this process and whether this occurs via IKKß- and JNK-dependent pathways. Rats received a 7-h infusion of Intralipid plus heparin (IH) to elevate circulating free fatty acids (FFA). During the last 2 h of the infusion, a hyperinsulinemic-euglycemic clamp with tracer was performed to assess hepatic and peripheral insulin sensitivity. An antioxidant, N-acetyl-L-cysteine (NAC), prevented IH-induced hepatic insulin resistance in parallel with prevention of decreased IκBα content, increased JNK phosphorylation (markers of IKKß and JNK activation, respectively), increased serine phosphorylation of IRS-1 and IRS-2, and impaired insulin signaling in the liver without affecting IH-induced hepatic PKCδ activation. Furthermore, an antisense oligonucleotide against PKCδ prevented IH-induced phosphorylation of p47(phox) (marker of NADPH oxidase activation) and hepatic insulin resistance. Apocynin, an NADPH oxidase inhibitor, prevented IH-induced hepatic and peripheral insulin resistance similarly to NAC. These results demonstrate that PKCδ, NADPH oxidase, and oxidative stress play a causal role in FFA-induced hepatic insulin resistance in vivo and suggest that the pathway of FFA-induced hepatic insulin resistance is FFA → PKCδ → NADPH oxidase and oxidative stress → IKKß/JNK → impaired hepatic insulin signaling.


Assuntos
Ácidos Graxos não Esterificados/sangue , Glucose/metabolismo , Resistência à Insulina/fisiologia , Fígado/metabolismo , NADPH Oxidases/metabolismo , Estresse Oxidativo/fisiologia , Proteína Quinase C/metabolismo , Animais , Feminino , Ratos , Ratos Wistar
9.
Cell Metab ; 19(4): 653-66, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24703697

RESUMO

Gestational diabetes (GDM) results from failure of the ß cells to adapt to increased metabolic demands; however, the cause of GDM and the extremely high rate of progression to type 2 diabetes (T2D) remains unknown. Using metabolomics, we show that the furan fatty acid metabolite 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid (CMPF) is elevated in the plasma of humans with GDM, as well as impaired glucose-tolerant and T2D patients. In mice, diabetic levels of plasma CMPF induced glucose intolerance, impaired glucose-stimulated insulin secretion, and decreased glucose utilization. Mechanistically, we show that CMPF acts directly on the ß cell, causing impaired mitochondrial function, decreasing glucose-induced ATP accumulation, and inducing oxidative stress, resulting in dysregulation of key transcription factors and ultimately reduced insulin biosynthesis. Importantly, specifically blocking its transport through OAT3 or antioxidant treatment could prevent CMPF-induced ß cell dysfunction. Thus, CMPF provides a link between ß cell dysfunction and GDM/T2D that could be targeted therapeutically.


Assuntos
Furanos/sangue , Células Secretoras de Insulina/patologia , Mitocôndrias/patologia , Modelos Biológicos , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Propionatos/sangue , Trifosfato de Adenosina/metabolismo , Animais , Furanos/efeitos adversos , Humanos , Insulina/biossíntese , Células Secretoras de Insulina/efeitos dos fármacos , Metabolômica , Camundongos , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Propionatos/efeitos adversos , Fatores de Transcrição/metabolismo
10.
Sci Signal ; 7(313): ra17, 2014 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-24550542

RESUMO

Adaptor proteins link surface receptors to intracellular signaling pathways and potentially control the way cells respond to nutrient availability. Mice deficient in p66Shc, the most recently evolved isoform of the Shc1 adaptor proteins and a mediator of receptor tyrosine kinase signaling, display resistance to diabetes and obesity. Using quantitative mass spectrometry, we found that p66Shc inhibited glucose metabolism. Depletion of p66Shc enhanced glycolysis and increased the allocation of glucose-derived carbon into anabolic metabolism, characteristics of a metabolic shift called the Warburg effect. This change in metabolism was mediated by the mammalian target of rapamycin (mTOR) because inhibition of mTOR with rapamycin reversed the glycolytic phenotype caused by p66Shc deficiency. Thus, unlike the other isoforms of Shc1, p66Shc appears to antagonize insulin and mTOR signaling, which limits glucose uptake and metabolism. Our results identify a critical inhibitory role for p66Shc in anabolic metabolism.


Assuntos
Glicólise/fisiologia , Proteínas Adaptadoras da Sinalização Shc/metabolismo , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/metabolismo , Animais , Antibióticos Antineoplásicos/farmacologia , Glucose/genética , Glucose/metabolismo , Glicólise/efeitos dos fármacos , Células HeLa , Humanos , Camundongos , Camundongos Knockout , Proteínas Adaptadoras da Sinalização Shc/genética , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/genética
11.
Diabetes ; 62(11): 3874-86, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23942551

RESUMO

Chronic exposure to high glucose leads to diabetic nephropathy characterized by increased mesangial matrix protein (e.g., collagen) accumulation. Altered cell signaling and gene expression accompanied by oxidative stress have been documented. The contribution of the tyrosine kinase, c-Src (Src), which is sensitive to oxidative stress, was examined. Cultured rat mesangial cells were exposed to high glucose (25 mmol/L) in the presence and absence of Src inhibitors (PP2, SU6656), Src small interfering RNA (siRNA), and the tumor necrosis factor-α-converting enzyme (TACE) inhibitor, TAPI-2. Src was investigated in vivo by administration of PP2 to streptozotocin (STZ)-induced diabetic DBA2/J mice. High glucose stimulated Src, TACE, epidermal growth factor receptor (EGFR), mitogen-activated protein kinases (MAPKs), extracellular signal-regulated kinase (ERK1/2, p38), and collagen IV accumulation in mesangial cells. PP2 and SU6656 blocked high glucose-stimulated phosphorylation of Src Tyr-416, EGFR, and MAPKs. These inhibitors and Src knockdown by siRNA, as well as TAPI-2, also abrogated high glucose-induced phosphorylation of these targets and collagen IV accumulation. In STZ-diabetic mice, albuminuria, increased Src pTyr-416, TACE activation, ERK and EGFR phosphorylation, glomerular collagen accumulation, and podocyte loss were inhibited by PP2. These data indicate a role for Src in a high glucose-Src-TACE-heparin-binding epidermal growth factor-EGFR-MAPK-signaling pathway to collagen accumulation. Thus, Src may provide a novel therapeutic target for diabetic nephropathy.


Assuntos
Proteínas ADAM/metabolismo , Colágeno Tipo IV/biossíntese , Nefropatias Diabéticas/prevenção & controle , Receptores ErbB/metabolismo , Quinases da Família src/antagonistas & inibidores , Proteína ADAM17 , Albuminúria/prevenção & controle , Animais , Diabetes Mellitus Experimental/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Glucose/administração & dosagem , Masculino , Células Mesangiais/metabolismo , Camundongos , Podócitos/efeitos dos fármacos , Podócitos/fisiologia , Pirimidinas/farmacologia , Ratos , Transdução de Sinais/efeitos dos fármacos , Ativação Transcricional/efeitos dos fármacos
12.
J Biol Chem ; 288(10): 6835-48, 2013 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-23329835

RESUMO

Thioredoxin-interacting protein (TxNIP) is up-regulated by high glucose and is associated with oxidative stress. It has been implicated in hyperglycemia-induced ß-cell dysfunction and apoptosis. As high glucose and oxidative stress mediate diabetic nephropathy (DN), the contribution of TxNIP was investigated in renal mesangial cell reactive oxygen species (ROS) generation and collagen synthesis. To determine the role of TxNIP, mouse mesangial cells (MC) cultured from wild-type C3H and TxNIP-deficient Hcb-19 mice were incubated in HG. Confocal microscopy was used to measure total and mitochondrial ROS production (DCF and MitoSOX) and collagen IV. Trx and NADPH oxidase activities were assayed and NADPH oxidase isoforms, Nox2 and Nox4, and antioxidant enzymes were determined by immunoblotting. C3H MC exposed to HG elicited a significant increase in cellular and mitochondrial ROS as well as Nox4 protein expression and NADPH oxidase activation, whereas Hcb-19 MC showed no response. Trx activity was attenuated by HG only in C3H MC. These defects in Hcb-19 MC were not due to increased antioxidant enzymes or scavenging of ROS, but associated with decreased ROS generation. Adenovirus-mediated overexpression of TxNIP in Hcb-19 MC and TxNIP knockdown with siRNA in C3H confirmed the specific role of TxNIP. Collagen IV accumulation in HG was markedly reduced in Hcb-19 cells. TxNIP is a critical component of the HG-ROS signaling pathway, required for the induction of mitochondrial and total cell ROS and the NADPH oxidase isoform, Nox4. TxNIP is a potential target to prevent DN.


Assuntos
Proteínas de Transporte/metabolismo , Glucose/farmacologia , Células Mesangiais/efeitos dos fármacos , NADPH Oxidases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Western Blotting , Proteínas de Transporte/genética , Células Cultivadas , Colágeno Tipo IV/genética , Colágeno Tipo IV/metabolismo , Expressão Gênica/efeitos dos fármacos , Células Mesangiais/enzimologia , Células Mesangiais/metabolismo , Camundongos , Camundongos Endogâmicos C3H , Camundongos Knockout , Microscopia Confocal , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , NADPH Oxidase 4 , NADPH Oxidases/genética , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Tiorredoxinas/metabolismo
13.
Cell ; 151(2): 384-99, 2012 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-23063127

RESUMO

Vascular endothelial growth factor and its receptors, FLK1/KDR and FLT1, are key regulators of angiogenesis. Unlike FLK1/KDR, the role of FLT1 has remained elusive. FLT1 is produced as soluble (sFLT1) and full-length isoforms. Here, we show that pericytes from multiple tissues produce sFLT1. To define the biologic role of sFLT1, we chose the glomerular microvasculature as a model system. Deletion of Flt1 from specialized glomerular pericytes, known as podocytes, causes reorganization of their cytoskeleton with massive proteinuria and kidney failure, characteristic features of nephrotic syndrome in humans. The kinase-deficient allele of Flt1 rescues this phenotype, demonstrating dispensability of the full-length isoform. Using cell imaging, proteomics, and lipidomics, we show that sFLT1 binds to the glycosphingolipid GM3 in lipid rafts on the surface of podocytes, promoting adhesion and rapid actin reorganization. sFLT1 also regulates pericyte function in vessels outside of the kidney. Our findings demonstrate an autocrine function for sFLT1 to control pericyte behavior.


Assuntos
Glomérulos Renais/citologia , Glomérulos Renais/metabolismo , Podócitos/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Gangliosídeos/metabolismo , Humanos , Técnicas In Vitro , Metabolismo dos Lipídeos , Lipídeos/química , Camundongos , Camundongos Transgênicos , Pericitos/metabolismo , Proteinúria/metabolismo , Transdução de Sinais , Sindecanas/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética
14.
PLoS One ; 7(1): e28784, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22253696

RESUMO

BACKGROUND: Mechanisms underlying the attenuation of body weight gain and insulin resistance in response to high fat diet (HFD) by the curry compound curcumin need to be further explored. Although the attenuation of the inflammatory pathway is an accepted mechanism, a recent study suggested that curcumin stimulates Wnt signaling pathway and hence suppresses adipogenic differentiation. This is in contrast with the known repressive effect of curcumin on Wnt signaling in other cell lineages. METHODOLOGY AND PRINCIPAL FINDINGS: We conducted the examination on low fat diet, or HFD fed C57BL/6J mice with or without curcumin intervention for 28 weeks. Curcumin significantly attenuated the effect of HFD on glucose disposal, body weight/fat gain, as well as the development of insulin resistance. No stimulatory effect on Wnt activation was observed in the mature fat tissue. In addition, curcumin did not stimulate Wnt signaling in vitro in primary rat adipocytes. Furthermore, curcumin inhibited lipogenic gene expression in the liver and blocked the effects of HFD on macrophage infiltration and the inflammatory pathway in the adipose tissue. CONCLUSIONS AND SIGNIFICANCE: We conclude that the beneficial effect of curcumin during HFD consumption is mediated by attenuating lipogenic gene expression in the liver and the inflammatory response in the adipose tissue, in the absence of stimulation of Wnt signaling in mature adipocytes.


Assuntos
Adipócitos/patologia , Curcumina/farmacologia , Inflamação/patologia , Resistência à Insulina , Lipogênese/efeitos dos fármacos , Fígado/metabolismo , Obesidade/prevenção & controle , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Adiposidade/efeitos dos fármacos , Animais , Curcumina/administração & dosagem , Gorduras na Dieta/farmacologia , Suplementos Nutricionais , Regulação da Expressão Gênica/efeitos dos fármacos , Glucose/metabolismo , Células Hep G2 , Humanos , Inflamação/genética , Insulina/farmacologia , Lipogênese/genética , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Aumento de Peso/efeitos dos fármacos
15.
Am J Physiol Endocrinol Metab ; 301(4): E713-26, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21712532

RESUMO

Hyperglycemia augments flux through the hexosamine biosynthetic pathway and subsequent O-linkage of single ß-N-acetyl-d-glucosamine moieties to serine and threonine residues on cytoplasmic and nuclear proteins (O-GlcNAcylation). Perturbations in this posttranslational modification have been proposed to promote glomerular matrix accumulation in diabetic nephropathy, but clear evidence and mechanism are lacking. We tested the hypothesis that O-GlcNAcylation enhances profibrotic signaling in rat mesangial cells. An adenovirus expressing shRNA directed against O-GlcNAc transferase (OGT) markedly reduced basal and high-glucose-stimulated O-GlcNAcylation. Interestingly, O-GlcNAc depletion prevented high-glucose-induced p38 mitogen-activated protein kinase (MAPK) and c-Jun NH(2)-terminal kinase phosphorylation. Downstream of p38, O-GlcNAc controlled the expression of plasminogen activator inhibitor-1, fibronectin, and transforming growth factor-ß, important factors in matrix accumulation in diabetic nephropathy. Treating mesangial cells with thiamet-G, a highly selective inhibitor of O-GlcNAc-specific hexosaminidase (O-GlcNAcase), increased O-GlcNAcylation and p38 phosphorylation. The high-glucose-stimulated kinase activity of apoptosis signal-regulating kinase 1 (ASK1), an upstream MAPK kinase kinase for p38 that is negatively regulated by Akt, was inhibited by OGT shRNA. Akt Thr(308) and Ser(473) phosphorylation were enhanced following OGT shRNA expression in high-glucose-exposed mesangial cells, but high-glucose-induced p38 phosphorylation was not attenuated by OGT shRNA in cells pretreated with the phosphatidylinositol 3-kinase inhibitor LY-294002. OGT shRNA also reduced high-glucose-stimulated reactive oxygen species (ROS) formation. In contrast, diminished O-GlcNAcylation caused elevated ERK phosphorylation and PKCδ membrane translocation. Thus, O-GlcNAcylation is coupled to profibrotic p38 MAPK signaling by high glucose in part through Akt and possibly through ROS.


Assuntos
Acetilglucosamina/metabolismo , Glucose/metabolismo , Células Mesangiais/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Células Cultivadas , Glucose/farmacologia , MAP Quinase Quinase Quinase 5/genética , MAP Quinase Quinase Quinase 5/metabolismo , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/fisiologia
16.
J Am Soc Nephrol ; 21(10): 1691-701, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20688931

RESUMO

VEGF is a potent vascular growth factor produced by podocytes in the developing and mature glomerulus. Specific deletion of VEGF from podocytes causes glomerular abnormalities including profound endothelial cell injury, suggesting that paracrine signaling is critical for maintaining the glomerular filtration barrier (GFB). However, it is not clear whether normal GFB function also requires autocrine VEGF signaling in podocytes. In this study, we sought to determine whether an autocrine VEGF-VEGFR-2 loop in podocytes contributes to the maintenance of the GFB in vivo. We found that induced, whole-body deletion of VEGFR-2 caused marked abnormalities in the kidney and also other tissues, including the heart and liver. By contrast, podocyte-specific deletion of the VEGFR-2 receptor had no effect on glomerular development or function even up to 6 months old. Unlike cell culture models, enhanced expression of VEGF by podocytes in vivo caused foot process fusion and alterations in slit diaphragm-associated proteins; however, inhibition of VEGFR-2 could not rescue this defect. Although VEGFR-2 was dispensable in the podocyte, glomerular endothelial cells depended on VEGFR-2 expression: postnatal deletion of the receptor resulted in global defects in the glomerular microvasculature. Taken together, our results provide strong evidence for dominant actions of a paracrine VEGF-VEGFR-2 signaling loop both in the developing and in the filtering glomerulus. VEGF produced by the podocyte regulates the structure and function of the adjacent endothelial cell.


Assuntos
Comunicação Autócrina , Comunicação Parácrina , Podócitos/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Células Endoteliais/fisiologia , Rim/patologia , Camundongos , Camundongos Transgênicos , Fenótipo , Proteinúria/patologia , Regulação para Cima , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética
17.
Cell Signal ; 22(8): 1240-6, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20385228

RESUMO

Thioredoxin interacting protein (TxNIP) functions as an effector of glucotoxicity in pancreatic beta-cells. Exendin-4 (Ex-4), a long-term effective GLP-1 receptor agonist, reduces TxNIP level in pancreatic beta-cells. Mechanisms underlying this reduction, however, remain largely unknown. We show here that Ex-4, 8-bromo-cAMP, the cAMP promoting agent forskolin, as well as activators of protein kinase A (PKA) and exchange protein activated by cAMP (Epac), all attenuated the effect of high glucose (20mM) on TxNIP level in the pancreatic beta-cell line Ins-1. Forskolin and Ex-4 also reduced TxNIP level in cultured primary rat islets. This repressive effect is at least partially mediated via stimulating proteasome-dependent TxNIP degradation, since the proteasomal inhibitor MG132, but not the lysosomal inhibitor chloroquine, significantly blocked the repressive effect of forskolin. Furthermore, forskolin enhanced TxNIP ubiquitination. Both PKA inhibition and Epac inhibition partially blocked the repressive effect of forskolin on TxNIP level. In addition, forskolin and Ex-4 protected Ins-1 cells from high glucose-induced apoptotic activity, assessed by measuring caspase 3 activity. Finally, knockdown of TxNIP expression led to reduced caspase 3 expression levels and blunted response to forskolin treatment. We suggest that proteasome-dependent TxNIP degradation is a novel mechanism by which Ex-4-cAMP signaling protects pancreatic beta cells.


Assuntos
Proteínas de Transporte/metabolismo , AMP Cíclico/metabolismo , Células Secretoras de Insulina/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Transdução de Sinais , Animais , Apoptose , Proteínas de Ciclo Celular , Linhagem Celular , Colforsina/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Exenatida , Glucose/farmacologia , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/enzimologia , Peptídeos/farmacologia , Ratos , Ratos Wistar , Peçonhas/farmacologia
18.
Breast Cancer Res Treat ; 122(3): 647-59, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19851863

RESUMO

The mechanism of the association between breast cancer and obesity remains unknown. To investigate this mice over-expressing HER2/Neu in the mammary gland (MMTV-HER2/Neu) were fed either a high-fat diet (45% of calories) (HFD) or low-fat diet (10%) (LFD) from 4 weeks of age and followed for up to 1 year, or sacrificed when a mammary tumor reached 1.5 cm. There was a small but significant increase in body weight on HFD (P < 0.05) and the HFD mice displayed a greater fat mass determined by MRI (P < 0.01). Mild glucose intolerance was observed from 3 months of age on HFD, but insulin levels were not elevated. While the time of onset of a first tumor and tumor growth rates were not altered, mice on HFD had an earlier onset of a second tumor and a twofold greater incidence (LFD 25%, HFD 54%) and a greater absolute number of multiple tumors (tumors/mouse, LFD 1.5 +/- 0.25 vs. HFD 2.7 +/- 0.23, P < 0.01). Consistent with a lack of hyperinsulinemia, immunoblotting of skeletal muscle lysates from mice injected with insulin showed no insulin resistance determined by the phosphorylation of Akt/PKB. Similarly, there was no difference in basal or maximum insulin-stimulated phosphorylation of IRS-1/2, Akt/PKB, or p70 S6K in tumor cell lysates from HFD and LFD groups. Immunohistochemistry revealed no difference in tumor tissue staining for the proliferative marker, Ki67, between diets. These data indicate that HFD, in the absence of significant insulin resistance, mediates a tumor promoting, but not a tumor growth effect in this model of mammary carcinogenesis.


Assuntos
Gorduras na Dieta/administração & dosagem , Resistência à Insulina , Neoplasias Mamárias Experimentais/metabolismo , Vírus do Tumor Mamário do Camundongo/fisiologia , Receptor ErbB-2/metabolismo , Animais , Western Blotting , Peso Corporal , Proliferação de Células , Feminino , Intolerância à Glucose , Técnicas Imunoenzimáticas , Imunoprecipitação , Insulina/sangue , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Transgênicos
19.
Exp Diabetes Res ; 2009: 910783, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19609456

RESUMO

Peroxisome proliferator-activated receptor (PPARgamma), a ligand-dependent transcription factor, negatively modulates high glucose effects. We postulated that rosiglitazone (RSG), an activator of PPARgamma prevents the upregulation of vascular endothelial growth factor (VEGF) and collagen IV by mesangial cells exposed to high glucose. Primary cultured rat mesangial cells were growth-arrested in 5.6 mM (NG) or 25 mM D-glucose (HG) for up to 48 hours. In HG, PPARgamma mRNA and protein were reduced within 3 h, and enhanced ROS generation, expression of p22(phox), VEGF and collagen IV, and PKC-zeta membrane association were prevented by RSG. In NG, inhibition of PPARgamma caused ROS generation and VEGF expression that were unchanged by RSG. Reduced AMP-activated protein kinase (AMPK) phosphorylation in HG was unchanged with RSG, and VEGF expression was unaffected by AMPK inhibition. Hence, PPARgamma is a negative modulator of HG-induced signaling that acts through PKC-zeta but not AMPK and regulates VEGF and collagen IV expression by mesangial cells.


Assuntos
Colágeno Tipo IV/metabolismo , Glucose/metabolismo , Células Mesangiais/efeitos dos fármacos , PPAR gama/agonistas , PPAR gama/metabolismo , Tiazolidinedionas/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Células Cultivadas , Cromanos/farmacologia , Colágeno Tipo IV/genética , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Membranas/química , Células Mesangiais/metabolismo , Células Mesangiais/ultraestrutura , NADPH Oxidases/química , NADPH Oxidases/efeitos dos fármacos , NADPH Oxidases/metabolismo , Estresse Oxidativo/efeitos dos fármacos , PPAR gama/antagonistas & inibidores , PPAR gama/genética , Proteína Quinase C/metabolismo , RNA Mensageiro , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Elementos de Resposta/genética , Rosiglitazona , Transfecção , Troglitazona , Fator A de Crescimento do Endotélio Vascular/genética
20.
Am J Physiol Endocrinol Metab ; 296(6): E1251-61, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19223654

RESUMO

Thioredoxin-interacting protein (TxNIP) is an endogenous inhibitor of thioredoxin, a ubiquitous thiol oxidoreductase, that regulates cellular redox status. Diabetic mice exhibit increased expression of TxNIP in pancreatic islets, and recent studies suggest that TxNIP is a proapoptotic factor in beta-cells that may contribute to the development of diabetes. Here, we examined the role of TxNIP deficiency in vivo in the development of insulin-deficient diabetes and whether it impacted on pancreatic beta-cell mass and/or insulin secretion. TxNIP-deficient (Hcb-19/TxNIP(-/-)) mice had lower baseline glycemia, higher circulating insulin concentrations, and higher total pancreatic insulin content and beta-cell mass than control mice (C3H). Hcb-19/TxNIP(-/-) did not develop hyperglycemia when injected with standard multiple low doses of streptozotocin (STZ), in contrast to C3H controls. Surprisingly, although beta-cell mass remained higher in Hcb-19/TxNIP(-/-) mice compared with C3H after STZ exposure, the relative decrease induced by STZ was as great or even greater in the TxNIP-deficient animals. Consistently, cultured pancreatic INS-1 cells transfected with small-interfering RNA against TxNIP were more sensitive to cell death induced by direct exposure to STZ or to the combination of inflammatory cytokines interleukin-1beta, interferon-gamma, and tumor necrosis factor-alpha. Furthermore, when corrected for insulin content, isolated pancreatic islets from TxNIP(-/-) mice exhibited reduced glucose-induced insulin secretion. These data indicate that TxNIP functions as a regulator of beta-cell mass and influences insulin secretion. In conclusion, the relative resistance of TxNIP-deficient mice to STZ-induced diabetes appears to be because of an increase in beta-cell mass. However, TxNIP deficiency is associated with sensitization to STZ- and cytokine-induced beta-cell death, indicating complex regulatory roles of TxNIP under different physiological and pathological conditions.


Assuntos
Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 1/patologia , Células Secretoras de Insulina/citologia , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Animais , Antibióticos Antineoplásicos/farmacologia , Apoptose/fisiologia , Proteínas de Ciclo Celular , Linhagem Celular , Citocinas/metabolismo , Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Tipo 1/fisiopatologia , Relação Dose-Resposta a Droga , Glucose/farmacologia , Marcação In Situ das Extremidades Cortadas , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Mutantes , Ratos , Estreptozocina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA