Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Genet Med ; 25(7): 100836, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37013901

RESUMO

PURPOSE: Rothmund-Thomson syndrome (RTS) is characterized by poikiloderma, sparse hair, small stature, skeletal defects, cancer, and cataracts, resembling features of premature aging. RECQL4 and ANAPC1 are the 2 known disease genes associated with RTS in >70% of cases. We describe RTS-like features in 5 individuals with biallelic variants in CRIPT (OMIM 615789). METHODS: Two newly identified and 4 published individuals with CRIPT variants were systematically compared with those with RTS using clinical data, computational analysis of photographs, histologic analysis of skin, and cellular studies on fibroblasts. RESULTS: All CRIPT individuals fulfilled the diagnostic criteria for RTS and additionally had neurodevelopmental delay and seizures. Using computational gestalt analysis, CRIPT individuals showed greatest facial similarity with individuals with RTS. Skin biopsies revealed a high expression of senescence markers (p53/p16/p21) and the senescence-associated ß-galactosidase activity was elevated in CRIPT-deficient fibroblasts. RECQL4- and CRIPT-deficient fibroblasts showed an unremarkable mitotic progression and unremarkable number of mitotic errors and no or only mild sensitivity to genotoxic stress by ionizing radiation, mitomycin C, hydroxyurea, etoposide, and potassium bromate. CONCLUSION: CRIPT causes an RTS-like syndrome associated with neurodevelopmental delay and epilepsy. At the cellular level, RECQL4- and CRIPT-deficient cells display increased senescence, suggesting shared molecular mechanisms leading to the clinical phenotypes.


Assuntos
Síndrome de Rothmund-Thomson , Humanos , Síndrome de Rothmund-Thomson/genética , Síndrome de Rothmund-Thomson/diagnóstico , Síndrome de Rothmund-Thomson/patologia , Senescência Celular/genética , Dano ao DNA , Hidroxiureia/metabolismo , Fibroblastos , Mutação , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
2.
Am J Hum Genet ; 109(9): 1713-1723, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35948005

RESUMO

The leucine-rich glioma-inactivated (LGI) family consists of four highly conserved paralogous genes, LGI1-4, that are highly expressed in mammalian central and/or peripheral nervous systems. LGI1 antibodies are detected in subjects with autoimmune limbic encephalitis and peripheral nerve hyperexcitability syndromes (PNHSs) such as Isaacs and Morvan syndromes. Pathogenic variations of LGI1 and LGI4 are associated with neurological disorders as disease traits including familial temporal lobe epilepsy and neurogenic arthrogryposis multiplex congenita 1 with myelin defects, respectively. No human disease has been reported associated with either LGI2 or LGI3. We implemented exome sequencing and family-based genomics to identify individuals with deleterious variants in LGI3 and utilized GeneMatcher to connect practitioners and researchers worldwide to investigate the clinical and electrophysiological phenotype in affected subjects. We also generated Lgi3-null mice and performed peripheral nerve dissection and immunohistochemistry to examine the juxtaparanode LGI3 microarchitecture. As a result, we identified 16 individuals from eight unrelated families with loss-of-function (LoF) bi-allelic variants in LGI3. Deep phenotypic characterization showed LGI3 LoF causes a potentially clinically recognizable PNHS trait characterized by global developmental delay, intellectual disability, distal deformities with diminished reflexes, visible facial myokymia, and distinctive electromyographic features suggestive of motor nerve instability. Lgi3-null mice showed reduced and mis-localized Kv1 channel complexes in myelinated peripheral axons. Our data demonstrate bi-allelic LoF variants in LGI3 cause a clinically distinguishable disease trait of PNHS, most likely caused by disturbed Kv1 channel distribution in the absence of LGI3.


Assuntos
Mioquimia , Proteínas do Tecido Nervoso , Animais , Autoanticorpos , Axônios , Genômica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Mamíferos/genética , Camundongos , Proteínas do Tecido Nervoso/genética , Fenótipo , Genética Reversa
3.
Nat Genet ; 54(8): 1214-1226, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35864190

RESUMO

Cirrhosis is usually a late-onset and life-threatening disease characterized by fibrotic scarring and inflammation that disrupts liver architecture and function. While it is typically the result of alcoholism or hepatitis viral infection in adults, its etiology in infants is much less understood. In this study, we report 14 children from ten unrelated families presenting with a syndromic form of pediatric liver cirrhosis. By genome/exome sequencing, we found recessive variants in FOCAD segregating with the disease. Zebrafish lacking focad phenocopied the human disease, revealing a signature of altered messenger RNA (mRNA) degradation processes in the liver. Using patient's primary cells and CRISPR-Cas9-mediated inactivation in human hepatic cell lines, we found that FOCAD deficiency compromises the SKI mRNA surveillance pathway by reducing the levels of the RNA helicase SKIC2 and its cofactor SKIC3. FOCAD knockout hepatocytes exhibited lowered albumin expression and signs of persistent injury accompanied by CCL2 overproduction. Our results reveal the importance of FOCAD in maintaining liver homeostasis and disclose a possible therapeutic intervention point via inhibition of the CCL2/CCR2 signaling axis.


Assuntos
Cirrose Hepática , Proteínas Supressoras de Tumor , Adulto , Animais , Criança , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Síndrome , Proteínas Supressoras de Tumor/genética , Peixe-Zebra/genética
4.
Mol Genet Metab ; 119(1-2): 44-9, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27477828

RESUMO

Primary 5-oxoprolinuria (pyroglutamic aciduria) is caused by a genetic defect in the γ-glutamyl cycle, affecting either glutathione synthetase or 5-oxoprolinase. While several dozens of patients with glutathione synthetase deficiency have been reported, with hemolytic anemia representing the clinical key feature, 5-oxoprolinase deficiency due to OPLAH mutations is less frequent and so far has not attracted much attention. This has prompted us to investigate the clinical phenotype as well as the underlying genotype in patients from 14 families of various ethnic backgrounds who underwent diagnostic mutation analysis following the detection of 5-oxoprolinuria. In all patients with 5-oxoprolinuria studied, bi-allelic mutations in OPLAH were indicated. An autosomal recessive mode of inheritance for 5-oxoprolinase deficiency is further supported by the identification of a single mutation in all 9/14 parent sample sets investigated (except for the father of one patient whose result suggests homozygosity), and the absence of 5-oxoprolinuria in all tested heterozygotes. It is remarkable, that all 20 mutations identified were novel and private to the respective families. Clinical features were highly variable and in several sib pairs, did not segregate with 5-oxoprolinuria. Although a pathogenic role of 5-oxoprolinase deficiency remains possible, this is not supported by our findings. Additional patient ascertainment and long-term follow-up is needed to establish the benign nature of this inborn error of metabolism. It is important that all symptomatic patients with persistently elevated levels of 5-oxoproline and no obvious explanation are investigated for the genetic etiology.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/genética , Glutationa Sintase/deficiência , Piroglutamato Hidrolase/deficiência , Piroglutamato Hidrolase/genética , Ácido Pirrolidonocarboxílico/metabolismo , Adolescente , Alelos , Erros Inatos do Metabolismo dos Aminoácidos/enzimologia , Erros Inatos do Metabolismo dos Aminoácidos/fisiopatologia , Criança , Pré-Escolar , Feminino , Glutationa/metabolismo , Glutationa Sintase/genética , Heterozigoto , Homozigoto , Humanos , Lactente , Masculino , Mutação
5.
JIMD Rep ; 29: 39-46, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26615597

RESUMO

Defects in the human gene encoding methylmalonyl-CoA mutase enzyme (MCM) give rise to a rare autosomal recessive inherited disorder of propionate metabolism termed mut methylmalonic acidemia (MMA). Patients with mut MMA have been divided into two subgroups: mut0 with complete loss of MCM activity and mut- with residual activity in the presence of adenosylcobalamin (AdoCbl). The disease typically presents in the first weeks or months of life and is clinically characterized by recurrent vomiting, metabolic acidosis, hyperammonemia, lethargy, poor feeding, failure to thrive and neurological deficit. To better elucidate the spectrum of mutations causing mut MMA in Saudi patients, we screened a cohort of 60 Saudi patients affected by either forms of the disease for mutations in the MUT gene. A total of 13 different mutations, including seven previously reported missense changes and six novel mutations, were detected in a homozygous state except for two compound heterozygous cases. The six novel mutations identified herein consist of three nonsense, two missense and one frameshift, distributed throughout the whole protein. This study describes for the first time the clinical and mutational spectrum of mut MMA in Saudi Arabian patients.

6.
Am J Hum Genet ; 92(1): 144-9, 2013 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-23273569

RESUMO

Opsismodysplasia (OPS) is a severe autosomal-recessive chondrodysplasia characterized by pre- and postnatal micromelia with extremely short hands and feet. The main radiological features are severe platyspondyly, squared metacarpals, delayed skeletal ossification, and metaphyseal cupping. In order to identify mutations causing OPS, a total of 16 cases (7 terminated pregnancies and 9 postnatal cases) from 10 unrelated families were included in this study. We performed exome sequencing in three cases from three unrelated families and only one gene was found to harbor mutations in all three cases: inositol polyphosphate phosphatase-like 1 (INPPL1). Screening INPPL1 in the remaining cases identified a total of 12 distinct INPPL1 mutations in the 10 families, present at the homozygote state in 7 consanguinous families and at the compound heterozygote state in the 3 remaining families. Most mutations (6/12) resulted in premature stop codons, 2/12 were splice site, and 4/12 were missense mutations located in the catalytic domain, 5-phosphatase. INPPL1 belongs to the inositol-1,4,5-trisphosphate 5-phosphatase family, a family of signal-modulating enzymes that govern a plethora of cellular functions by regulating the levels of specific phosphoinositides. Our finding of INPPL1 mutations in OPS, a severe spondylodysplastic dysplasia with major growth plate disorganization, supports a key and specific role of this enzyme in endochondral ossification.


Assuntos
Exoma , Mutação , Osteocondrodisplasias/genética , Monoéster Fosfórico Hidrolases/genética , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases , Análise de Sequência de DNA/métodos , Adulto Jovem
7.
Am J Med Genet A ; 158A(2): 309-14, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22246659

RESUMO

Fibrochondrogenesis is a severe, recessively inherited skeletal dysplasia shown to result from mutations in the gene encoding the proα1(XI) chain of type XI collagen, COL11A1. The first of two cases reported here was the affected offspring of first cousins and sequence analysis excluded mutations in COL11A1. Consequently, whole-genome SNP genotyping was performed to identify blocks of homozygosity, identical-by-descent, wherein the disease locus would reside. COL11A1 was not within a region of homozygosity, further excluding it as the disease locus, but the gene encoding the proα2(XI) chain of type XI collagen, COL11A2, was located within a large region of homozygosity. Sequence analysis identified homozygosity for a splice donor mutation in intron 18. Exon trapping demonstrated that the mutation resulted in skipping of exon 18 and predicted deletion of 18 amino acids from the triple helical domain of the protein. In the second case, heterozygosity for a de novo 9 bp deletion in exon 40 of COL11A2 was identified, indicating that there are autosomal dominant forms of fibrochondrogenesis. These findings thus demonstrate that fibrochondrogenesis can result from either recessively or dominantly inherited mutations in COL11A2.


Assuntos
Colágeno Tipo XI/genética , Nanismo/genética , Nanismo/patologia , Osteocondrodisplasias/genética , Osteocondrodisplasias/patologia , Sítios de Splice de RNA/genética , Nanismo/diagnóstico , Éxons , Genes Dominantes , Genes Recessivos , Genótipo , Humanos , Recém-Nascido , Íntrons , Osteocondrodisplasias/diagnóstico , Polimorfismo de Nucleotídeo Único , Deleção de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA