Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
Res Sq ; 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38947019

RESUMO

Background: Interactions among tumor, immune, and vascular niches play major roles in driving glioblastoma (GBM) malignancy and treatment responses. The composition, heterogeneity, and localization of extracellular core matrix proteins (CMPs) that mediate such interactions, however, are not well understood. Methods: Here, through computational genomics and proteomics approaches, we analyzed the functional and clinical relevance of CMP expression in GBM at bulk, single cell, and spatial anatomical resolution. Results: We identified genes encoding CMPs whose expression levels categorize GBM tumors into CMP expression-high (M-H) and CMP expression-low (M-L) groups. CMP enrichment is associated with worse patient survival, specific driver oncogenic alterations, mesenchymal state, infiltration of pro-tumor immune cells, and immune checkpoint gene expression. Anatomical and single-cell transcriptome analyses indicate that matrisome gene expression is enriched in vascular and leading edge/infiltrative niches that are known to harbor glioma stem cells driving GBM progression. Finally, we identified a 17-gene CMP expression signature, termed Matrisome 17 (M17) signature that further refines the prognostic value of CMP genes. The M17 signature is a significantly stronger prognostic factor compared to MGMT promoter methylation status as well as canonical subtypes, and importantly, potentially predicts responses to PD1 blockade. Conclusion: The matrisome gene expression signature provides a robust stratification of GBM patients by survival and potential biomarkers of functionally relevant GBM niches that can mediate mesenchymal-immune cross talk. Patient stratification based on matrisome profiles can contribute to selection and optimization of treatment strategies.

2.
Cancer Lett ; 596: 217009, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38849015

RESUMO

Renal cell carcinoma (RCC) bone metastatis progression is driven by crosstalk between tumor cells and the bone microenvironment, which includes osteoblasts, osteoclasts, and osteocytes. RCC bone metastases (RCCBM) are predominantly osteolytic and resistant to antiresorptive therapy. The molecular mechanisms underlying pathologic osteolysis and disruption of bone homeostasis remain incompletely understood. We previously reported that BIGH3/TGFBI (transforming growth factor-beta-induced protein ig-h3, shortened to BIGH3 henceforth) secreted by colonizing RCC cells drives osteolysis by inhibiting osteoblast differentiation, impairing healing of osteolytic lesions, which is reversible with osteoanabolic agents. Here, we report that BIGH3 induces osteocyte apoptosis in both human RCCBM tissue specimens and in a preclinical mouse model. We also demonstrate that BIGH3 reduces Cx43 expression, blocking gap junction (GJ) function and osteocyte network communication. BIGH3-mediated GJ inhibition is blocked by the lysosomal inhibitor hydroxychloroquine (HCQ), but not osteoanabolic agents. Our results broaden the understanding of pathologic osteolysis in RCCBM and indicate that targeting the BIGH3 mechanism could be a combinational strategy for the treatment of RCCBM-induced bone disease that overcomes the limited efficacy of antiresorptives that target osteoclasts.


Assuntos
Apoptose , Neoplasias Ósseas , Carcinoma de Células Renais , Proteínas da Matriz Extracelular , Junções Comunicantes , Neoplasias Renais , Osteócitos , Osteócitos/metabolismo , Osteócitos/patologia , Humanos , Animais , Neoplasias Ósseas/secundário , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Neoplasias Ósseas/tratamento farmacológico , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/secundário , Apoptose/efeitos dos fármacos , Neoplasias Renais/patologia , Neoplasias Renais/metabolismo , Neoplasias Renais/tratamento farmacológico , Junções Comunicantes/metabolismo , Junções Comunicantes/patologia , Proteínas da Matriz Extracelular/metabolismo , Camundongos , Progressão da Doença , Conexina 43/metabolismo , Linhagem Celular Tumoral , Fator de Crescimento Transformador beta/metabolismo , Osteólise/patologia , Osteólise/metabolismo , Feminino
3.
Cancer Res ; 84(5): 703-724, 2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38038968

RESUMO

Lipid metabolism plays a central role in prostate cancer. To date, the major focus has centered on de novo lipogenesis and lipid uptake in prostate cancer, but inhibitors of these processes have not benefited patients. A better understanding of how cancer cells access lipids once they are created or taken up and stored could uncover more effective strategies to perturb lipid metabolism and treat patients. Here, we identified that expression of adipose triglyceride lipase (ATGL), an enzyme that controls lipid droplet homeostasis and a previously suspected tumor suppressor, correlates with worse overall survival in men with advanced, castration-resistant prostate cancer (CRPC). Molecular, genetic, or pharmacologic inhibition of ATGL impaired human and murine prostate cancer growth in vivo and in cell culture or organoids under conditions mimicking the tumor microenvironment. Mass spectrometry imaging demonstrated that ATGL profoundly regulates lipid metabolism in vivo, remodeling membrane composition. ATGL inhibition induced metabolic plasticity, causing a glycolytic shift that could be exploited therapeutically by cotargeting both metabolic pathways. Patient-derived phosphoproteomics identified ATGL serine 404 as a target of CAMKK2-AMPK signaling in CRPC cells. Mutation of serine 404 did not alter the lipolytic activity of ATGL but did decrease CRPC growth, migration, and invasion, indicating that noncanonical ATGL activity also contributes to disease progression. Unbiased immunoprecipitation/mass spectrometry suggested that mutation of serine 404 not only disrupts existing ATGL protein interactions but also leads to new protein-protein interactions. Together, these data nominate ATGL as a therapeutic target for CRPC and provide insights for future drug development and combination therapies. SIGNIFICANCE: ATGL promotes prostate cancer metabolic plasticity and progression through both lipase-dependent and lipase-independent activity, informing strategies to target ATGL and lipid metabolism for cancer treatment.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Camundongos , Animais , Lipólise/genética , Metabolismo dos Lipídeos , Lipase/genética , Lipase/metabolismo , Serina/metabolismo , Microambiente Tumoral , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina
4.
bioRxiv ; 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37905032

RESUMO

Aged individuals and astronauts experience bone loss despite rigorous physical activity. Bone mechanoresponse is in-part regulated by mesenchymal stem cells (MSCs) that respond to mechanical stimuli. Direct delivery of low intensity vibration (LIV) recovers MSC proliferation in senescence and simulated microgravity models, indicating that age-related reductions in mechanical signal delivery within bone marrow may contribute to declining bone mechanoresponse. To answer this question, we developed a 3D bone marrow analog that controls trabecular geometry, marrow mechanics and external stimuli. Validated finite element (FE) models were developed to quantify strain environment within hydrogels during LIV. Bone marrow analogs with gyroid-based trabeculae of bone volume fractions (BV/TV) corresponding to adult (25%) and aged (13%) mice were printed using polylactic acid (PLA). MSCs encapsulated in migration-permissive hydrogels within printed trabeculae showed robust cell populations on both PLA surface and hydrogel within a week. Following 14 days of LIV treatment (1g, 100 Hz, 1 hour/day), type-I collagen and F-actin were quantified for the cells in the hydrogel fraction. While LIV increased all measured outcomes, FE models predicted higher von Mises strains for the 13% BV/TV groups (0.2%) when compared to the 25% BV/TV group (0.1%). Despite increased strains, collagen-I and F-actin measures remained lower in the 13% BV/TV groups when compared to 25% BV/TV counterparts, indicating that cell response to LIV does not depend on hydrogel strains and that bone volume fraction (i.e. available bone surface) directly affects cell behavior in the hydrogel phase independent of the external stimuli. Overall, bone marrow analogs offer a robust and repeatable platform to study bone mechanobiology.

5.
Biomater Adv ; 154: 213588, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37634337

RESUMO

Replacement therapy for the salivary gland (SG) remains an unmet clinical need. Xerostomia ("dry mouth") due to hyposalivation can result from injury or disease to the SG, such as salivary acinar death caused by radiation therapy (RT) for head and neck squamous cell carcinoma (HNSCC). Currently, only palliative treatments exist for xerostomia, and many patients endure deteriorated oral health and poor quality of life. Tissue engineering could offer a permanent solution for SG replacement by isolating healthy SG tissues prior to RT, expanding its cells in vitro, and recreating a functional salivary neogland for implantation post-RT. 3D bioprinting methods potentiate spatial cell deposition into defined hydrogel-based architectures, mimicking the thin epithelia developed during the complex branching morphogenesis of SG. By leveraging a microfluidics-based bioprinter with coaxial polymer and crosslinker streams, we fabricated thin, biocompatible, and reproducible hydrogel features that recapitulate the thin epithelia characteristics of SG. This flexible platform enabled two modes of printing: we produced solid hydrogel fibers, with diameters <100 µm, that could be rastered to create larger mm-scale structures. By a second method, we generated hollow tubes with wall thicknesses ranging 45-80 µm, total tube diameters spanning 0.6-2.2 mm, and confirmed tube patency. In both cases, SG cells could be printed within the thin hydrogel features, with preserved phenotype and high viability, even at high density (5.0 × 106 cells/mL). Our work demonstrates hydrogel feature control across multiple length scales, and a new paradigm for addressing SG restoration by creating microscale tissue engineered components.


Assuntos
Bioimpressão , Xerostomia , Humanos , Engenharia Tecidual , Microfluídica , Qualidade de Vida , Hidrogéis , Glândulas Salivares , Xerostomia/terapia
6.
Adv Healthc Mater ; 12(14): e2201434, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36461624

RESUMO

Many advanced cancer models, such as patient-derived xenografts (PDXs), offer significant benefits in their preservation of the native tumor's heterogeneity and susceptibility to treatments, but face significant barriers to use in their reliance on a rodent host for propagation and screening. PDXs remain difficult to implement in vitro, particularly in configurations that enable both detailed cellular analysis and high-throughput screening (HTS). Complex multilineage co-cultures with stromal fibroblasts, endothelium, and other cellular and structural components of the tumor microenvironment (TME) further complicate ex vivo implementation. Herein, the culture of multiple prostate cancer (PCa)-derived PDX models as 3D clusters within engineered biomimetic hydrogel matrices, in a HTS-compatible multiwell microfluidic format, alongside bone marrow-derived stromal cells and a perfused endothelial channel. Polymeric hydrogel matrices are customized for each cell type, enabling cell survival in vitro and facile imaging across all conditions. PCa PDXs demonstrate unique morphologies and reliance on TME partners, retention of known phenotype, and expected sensitivity or resistance to standard PCa therapeutics. This novel integration of technologies provides a fully human model, and expands the information to be gathered from each specimen, while avoiding the time and labor involved with animal-based testing.


Assuntos
Neoplasias da Próstata , Masculino , Animais , Humanos , Xenoenxertos , Neoplasias da Próstata/metabolismo , Técnicas de Cocultura , Próstata/patologia , Modelos Animais de Doenças , Hidrogéis , Microambiente Tumoral
7.
Biology (Basel) ; 11(9)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36138750

RESUMO

The bone marrow tumor microenvironment (BMTE) is a complex network of cells, extracellular matrix, and sequestered signaling factors that initially act as a hostile environment for disseminating tumor cells (DTCs) from the cancerous prostate. Three-dimensional (3D) culture systems offer an opportunity to better model these complex interactions in reactive stroma, providing contextual behaviors for cancer cells, stromal cells, and endothelial cells. Using a new system designed for the triculture of osteoblastic prostate cancer (PCa) cells, stromal cells, and microvascular endothelial cells, we uncovered a context-specific pro-apoptotic effect of endothelial cells of the bone marrow different from those derived from the lung or dermis. The paracrine nature of this effect was demonstrated by observations that conditioned medium from bone marrow endothelial cells, but not from dermal or lung endothelial cells, led to PCa cell death in microtumors grown in 3D BMTE-simulating hydrogels. Analysis of the phosphoproteome by reverse phase protein analysis (RPPA) of PCa cells treated with conditioned media from different endothelial cells identified the differential regulation of pathways involved in proliferation, cell cycle regulation, and apoptosis. The findings from the RPPA were validated by western blotting for representative signaling factors identified, including forkhead box M1 (FOXM1; proliferation factor), pRb (cell cycle regulator), and Smac/DIABLO (pro-apoptosis) among treatment conditions. The 3D model presented here thus presents an accurate model to study the influence of the reactive BMTE, including stromal and endothelial cells, on the adaptive behaviors of cancer cells modeling DTCs at sites of bone metastasis. These findings in 3D culture systems can lead to a better understanding of the real-time interactions among cells present in reactive stroma than is possible using animal models.

8.
Artigo em Inglês | MEDLINE | ID: mdl-35393258

RESUMO

OBJECTIVE: The study evaluated use of a multipoint saliva analyzer to assess patient wellness in a contemporary dental practice setting. STUDY DESIGN: Unstimulated saliva from a diverse 104 patient cohort was analyzed using the SillHa Oral Wellness System. The device measures the following 7 analytes present in the patient's oral rinse: cariogenic bacteria, acidity, buffer capacity, blood, leukocytes, protein, and ammonia. Data obtained were compared with validated clinical assessment data independently provided by credentialed dental professionals. RESULTS: Measured leukocyte and protein levels were higher in patients with periodontal disease and/or deep gingival pockets. Patients with a history of cancer and/or diabetes presented with higher ammonia and lower leukocyte levels. Acidity levels were higher in patients using multiple xerogenic medications and lower in patients with a history of sleep apnea. Sex differences showed female patients exhibiting higher acidity, lower buffer capacity, and lower ammonia than male patients. Increasing age is associated with elevated buffer capacity. CONCLUSIONS: Multipoint saliva analyzers such as the one used in this study, along with clinical practice examination and medical history, can provide rapid salivary component analysis that augments treatment planning. A follow-up multisite study would provide the opportunity to test this analyzer in clinical sites with different practice workflows.


Assuntos
Amônia , Doenças Periodontais , Amônia/metabolismo , Bactérias , Feminino , Humanos , Masculino , Saúde Bucal , Saliva/metabolismo
9.
Diagnostics (Basel) ; 12(3)2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35328163

RESUMO

Medical imaging devices often use automated processing that creates and displays a self-normalized image. When improperly executed, normalization can misrepresent information or result in an inaccurate analysis. In the case of diagnostic imaging, a false positive in the absence of disease, or a negative finding when disease is present, can produce a detrimental experience for the patient and diminish their health prospects and prognosis. In many clinical settings, a medical technical specialist is trained to operate an imaging device without sufficient background information or understanding of the fundamental theory and processes involved in image creation and signal processing. Here, we describe a user-friendly image processing algorithm that mitigates user bias and allows for true signal to be distinguished from background. For proof-of-principle, we used antibody-targeted molecular imaging of colorectal cancer (CRC) in a mouse model, expressing human MUC1 at tumor sites. Lesion detection was performed using targeted magnetic resonance imaging (MRI) of hyperpolarized silicon particles. Resulting images containing high background and artifacts were then subjected to individualized image post-processing and comparative analysis. Post-acquisition image processing allowed for co-registration of the targeted silicon signal with the anatomical proton magnetic resonance (MR) image. This new methodology allows users to calibrate a set of images, acquired with MRI, and reliably locate CRC tumors in the lower gastrointestinal tract of living mice. The method is expected to be generally useful for distinguishing true signal from background for other cancer types, improving the reliability of diagnostic MRI.

10.
Oral Maxillofac Surg ; 26(4): 613-618, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34981214

RESUMO

PURPOSE: The primary purpose of this study is to identify if there is an underlying genetic predisposition for COVID-related macroglossia and if this susceptibility is higher among individuals of African heritage. Secondary objectives include determining if genetic testing of COVID-infected patients who are intubated and prone could identify patients with higher susceptibility to the development of macroglossia. METHODS: A retrospective chart review was completed for each patient, and prospectively, genetic and histopathologic analyses were completed. Whole-exome sequencing was completed on two patients; immunohistochemistry was completed on the COVID-positive tissue samples. RESULTS: Histopathology of the COVID-positive patient revealed significant peri-lymphocytic infiltrate, which was absent in the COVID-negative patient. Immunohistochemistry confirmed the presence of immune cells. Results from the whole-exome sequencing were inconclusive. CONCLUSION: The findings of this study are consistent with others that have observed a lymphocytic infiltrate in the organs of patients infected with SARS-CoV-2. On histology, IHC highlighted a CD45 + predominance, indicating that a robust immune response is present in the tissues. The pathobiology of this phenomenon and its role in the development and/or persistence of massive macroglossia requires further study.


Assuntos
COVID-19 , Macroglossia , Humanos , COVID-19/genética , SARS-CoV-2/genética , Estudos Retrospectivos , Genômica
11.
Acta Biomater ; 138: 1-20, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34743044

RESUMO

This review explores the evolution of the use of hydrogels for craniofacial soft tissue engineering, ranging in complexity from acellular injectable fillers to fabricated, cell-laden constructs with complex compositions and architectures. Addressing both in situ and ex vivo approaches, tissue restoration secondary to trauma or tumor resection is discussed. Beginning with relatively simple epithelia of oral mucosa and gingiva, then moving to more functional units like vocal cords or soft tissues with multilayer branched structures, such as salivary glands, various approaches are presented toward the design of function-driven architectures, inspired by native tissue organization. Multiple tissue replacement paradigms are presented here, including the application of hydrogels as structural materials and as delivery platforms for cells and/or therapeutics. A practical hierarchy is proposed for hydrogel systems in craniofacial applications, based on their material and cellular complexity, spatial order, and biological cargo(s). This hierarchy reflects the regulatory complexity dictated by the Food and Drug Administration (FDA) in the United States prior to commercialization of these systems for use in humans. The wide array of available biofabrication methods, ranging from simple syringe extrusion of a biomaterial to light-based spatial patterning for complex architectures, is considered within the history of FDA-approved commercial therapies. Lastly, the review assesses the impact of these regulatory pathways on the translational potential of promising pre-clinical technologies for craniofacial applications. STATEMENT OF SIGNIFICANCE: While many commercially available hydrogel-based products are in use for the craniofacial region, most are simple formulations that either are applied topically or injected into tissue for aesthetic purposes. The academic literature previews many exciting applications that harness the versatility of hydrogels for craniofacial soft tissue engineering. One of the most exciting developments in the field is the emergence of advanced biofabrication methods to design complex hydrogel systems that can promote the functional or structural repair of tissues. To date, no clinically available hydrogel-based therapy takes full advantage of current pre-clinical advances. This review surveys the increasing complexity of the current landscape of available clinical therapies and presents a framework for future expanded use of hydrogels with an eye toward translatability and U.S. regulatory approval for craniofacial applications.


Assuntos
Hidrogéis , Engenharia Tecidual , Materiais Biocompatíveis , Humanos
12.
J Bone Oncol ; 31: 100399, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34745857

RESUMO

Renal cell carcinoma (RCC) is the most common malignancy of the kidney, representing 80-90% of renal neoplasms, and is associated with a five-year overall survival rate of approximately 74%. The second most common site of metastasis is bone. As patients are living longer due to new RCC targeting agents and immunotherapy, RCC bone metastases (RCCBM) treatment failure is more prevalent. Bone metastasis formation in RCC is indicative of a more aggressive disease and worse prognosis. Osteolysis is a prominent feature and causes SRE, including pathologic fractures. Bone metastasis from other tumors such as lung, breast, and prostate cancer, are more effectively treated with bisphosphonates and denosumab, thereby decreasing the need for palliative surgical intervention. Resistance to these antiresportives in RCCBM reflects unique cellular and molecular mechanisms in the bone microenvironment that promote progression via inhibition of the anabolic reparative response. Identification of critical mechanisms underlying RCCBM induced anabolic impairment could provide needed insight into how to improve treatment outcomes for patients with RCCBM, with the goals of minimizing progression that necessitates palliative surgery and improving survival.

13.
Front Mol Biosci ; 8: 711602, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34660692

RESUMO

An urgent need exists to develop large animal models for preclinical testing of new cell therapies designed to replace lost or damaged tissues. Patients receiving irradiation for treatment of head and neck cancers frequently develop xerostomia/dry mouth, a condition that could one day be treated by cell therapy to repopulate functional saliva-producing cells. Using immunosuppression protocols developed for patients receiving whole face transplants, we successfully used immunosuppressed miniswine as a suitable host animal to evaluate the long-term stability, biocompatibility, and fate of matrix-modified hyaluronate (HA) hydrogel/bioscaffold materials containing encapsulated salivary human stem/progenitor cells (hS/PCs). An initial biocompatibility test was conducted in parotids of untreated miniswine. Subsequent experiments using hS/PC-laden hydrogels were performed in animals, beginning an immunosuppression regimen on the day of surgery. Implant sites included the kidney capsule for viability testing and the parotid gland for biointegration time periods up to eight weeks. No transplant rejection was seen in any animal assessed by analysis of the tissues near the site of the implants. First-generation implants containing only cells in hydrogel proved difficult to handle in the surgical suite and were modified to adhere to a porcine small intestinal submucosa (SIS) membrane for improved handling and could be delivered through the da Vinci surgical system. Several different surgical techniques were assessed using the second-generation 3D-salivary tissue (3D-ST) for ease and stability both on the kidney capsule and in the capsule-less parotid gland. For the kidney, sliding the implant under the capsule membrane and quick stitching proved superior to other methods. For the parotid gland, creation of a tissue "pocket" for placement and immediate multilayer tissue closure were well tolerated with minimal tissue damage. Surgical clips were placed as fiduciary markers for tissue harvest. Some implant experiments were conducted with miniswine 90 days post-irradiation when salivation decreased significantly. Sufficient parotid tissue remained to allow implant placement, and animals tolerated immunosuppression. In all experiments, viability of implanted hS/PCs was high with clear signs of both vascular and nervous system integration in the parotid implants. We thus conclude that the immunosuppressed miniswine is a high-value emerging model for testing human implants prior to first-in-human trials.

14.
Front Oncol ; 11: 657701, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34290978

RESUMO

Colorectal cancer (CRC) is the third leading cause of cancer-related deaths among both men and women in the United States. Early detection and surgical removal of high-risk lesions in the colon can prevent disease from developing and spreading. Despite implementation of programs aimed at early detection, screening colonoscopies fail to detect a fraction of potentially aggressive colorectal lesions because of their location or nonobvious morphology. Optical colonoscopies, while highly effective, rely on direct visualization to detect changes on the surface mucosa that are consistent with dysplasia. Recent advances in endoscopy techniques and molecular imaging permit microscale visualization of the colonic mucosa. These technologies can be combined with various molecular probes that recognize and target heterogenous lesion surfaces to achieve early, real-time, and potentially non-invasive, detection of pre-cancerous lesions. The primary goal of this review is to contextualize existing and emergent CRC surface biomarkers and assess each's potential as a candidate marker for early marker-based detection of CRC lesions. CRC markers that we include were stratified by the level of support gleaned from peer-reviewed publications, abstracts, and databases of both CRC and other cancers. The selected biomarkers, accessible on the cell surface and preferably on the luminal surface of the colon tissue, are organized into three categories: (1) established biomarkers (those with considerable data and high confidence), (2) emerging biomarkers (those with increasing research interest but with less supporting data), and (3) novel candidates (those with very recent data, and/or supportive evidence from other tissue systems). We also present an overview of recent advances in imaging techniques useful for visual detection of surface biomarkers, and discuss the ease with which these methods can be combined with microscopic visualization.

15.
Artigo em Inglês | MEDLINE | ID: mdl-33982426

RESUMO

Silicon-based micro and nanoparticles are ideally suited for use as biomedical imaging agents because of their biocompatibility, biodegradability, and simple surface chemistry that facilitates drug loading and targeting. A method to hyperpolarize silicon particles using dynamic nuclear polarization (DNP), which increases magnetic resonance (MR) imaging signals by several orders-of-magnitude through enhanced nuclear spin alignment, was developed to allow silicon particles to function as contrast agents for in vivo magnetic resonance imaging. In this review, we describe the application of the DNP technique to silicon particles and nanoparticles for background-free real-time molecular MR imaging. This review provides a summary of the state-of-the-science in silicon particle hyperpolarization with a detailed protocol for hyperpolarizing silicon particles. This information will foster awareness and spur interest in this emerging area of nanoimaging and provide a path to new developments and discoveries to further advance the field. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies.


Assuntos
Nanopartículas , Silício , Meios de Contraste , Imageamento por Ressonância Magnética , Nanomedicina
16.
Int J Mol Sci ; 22(6)2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33809984

RESUMO

The Perlecan-Semaphorin 3A-Plexin A1-Neuropilin-1 (PSPN) Complex at the cell surface of prostate cancer (PCa) cells influences cell-cell cohesion and dyscohesion. We investigated matrix metalloproteinase-7/matrilysin (MMP-7)'s ability to digest components of the PSPN Complex in bone metastatic PCa cells using in silico analyses and in vitro experiments. Results demonstrated that in addition to the heparan sulfate proteoglycan, perlecan, all components of the PSPN Complex were degraded by MMP-7. To investigate the functional consequences of PSPN Complex cleavage, we developed a preformed microtumor model to examine initiation of cell dispersion after MMP-7 digestion. We found that while perlecan fully decorated with glycosaminoglycan limited dispersion of PCa microtumors, MMP-7 initiated rapid dyscohesion and migration even with perlecan present. Additionally, we found that a bioactive peptide (PLN4) found in perlecan domain IV in a region subject to digestion by MMP-7 further enhanced cell dispersion along with MMP-7. We found that digestion of the PSPN Complex with MMP-7 destabilized cell-cell junctions in microtumors evidenced by loss of co-registration of E-cadherin and F-actin. We conclude that MMP-7 plays a key functional role in PCa cell transition from a cohesive, indolent phenotype to a dyscohesive, migratory phenotype favoring production of circulating tumor cells and metastasis to bone.


Assuntos
Metaloproteinase 7 da Matriz/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neoplasias da Próstata/metabolismo , Adesão Celular , Moléculas de Adesão Celular/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Imunofluorescência , Humanos , Masculino , Modelos Biológicos , Neuropilina-1/metabolismo , Neoplasias da Próstata/etiologia , Ligação Proteica , Proteólise
17.
J Nanobiotechnology ; 19(1): 50, 2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33596915

RESUMO

BACKGROUND: Sialyl-Lewis X/L-selectin high affinity binding interactions between transmembrane O-glycosylated mucins proteins and the embryo have been implicated in implantation processes within the human reproductive system. However, the adhesive properties of these mucins at the endometrial cell surface are difficult to resolve due to known discrepancies between in vivo models and the human reproductive system and a lack of sensitivity in current in vitro models. To overcome these limitations, an in vitro model of the human endometrial epithelial was interrogated with single molecule force spectroscopy (SMFS) to delineate the molecular configurations of mucin proteins that mediate the high affinity L-selectin binding required for human embryo implantation. RESULTS: This study reveals that MUC1 contributes to both the intrinsic and extrinsic adhesive properties of the HEC-1 cellular surface. High expression of MUC1 on the cell surface led to a significantly increased intrinsic adhesion force (148 pN vs. 271 pN, p < 0.001), whereas this adhesion force was significantly reduced (271 pN vs. 118 pN, p < 0.001) following siRNA mediated MUC1 ablation. Whilst high expression of MUC1 displaying elevated glycosylation led to strong extrinsic (> 400 pN) L-selectin binding at the cell surface, low expression of MUC1 with reduced glycosylation resulted in significantly less (≤200 pN) binding events. CONCLUSIONS: An optimal level of MUC1 together with highly glycosylated decoration of the protein is critical for high affinity L-selectin binding. This study demonstrates that MUC1 contributes to cellular adhesive properties which may function to facilitate trophoblast binding to the endometrial cell surface through the L-selectin/sialyl-Lewis x adhesion system subsequent to implantation.


Assuntos
Selectina L/química , Selectina L/metabolismo , Mucina-1/química , Mucina-1/metabolismo , Biofísica , Adesão Celular , Linhagem Celular , Células Epiteliais , Glicosilação , Humanos , Mucinas/metabolismo , Imagem Individual de Molécula
18.
Reports (MDPI) ; 4(4)2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35937580

RESUMO

"Tumor-educated platelets" have recently generated substantial interest for the diagnosis of cancer. We hypothesized that tumor educated platelets from patients with brain tumors will reflect altered metabolism compared to platelets from healthy volunteers. Here, in a pilot study, we have employed nuclear magnetic resonance (NMR) spectroscopy in platelets from brain tumor patients to demonstrate altered metabolism compared to the platelets obtained from healthy volunteers.

19.
J Vis Exp ; (166)2020 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-33346184

RESUMO

Patient-derived xenografts (PDX), generated when resected patient tumor tissue is engrafted directly into immunocompromised mice, remain biologically stable, thereby preserving molecular, genetic, and histological features, as well as heterogeneity of the original tumor. However, using these models to perform a multitude of experiments, including drug screening, is prohibitive both in terms of cost and time. Three-dimensional (3D) culture systems are widely viewed as platforms in which cancer cells retain their biological integrity through biochemical interactions, morphology, and architecture. Our team has extensive experience culturing PDX cells in vitro using 3D matrices composed of hyaluronic acid (HA). In order to separate mouse fibroblast stromal cells associated with PDXs, we use rotation culture, where stromal cells adhere to the surface of tissue culture-treated plates while dissociated PDX tumor cells float and self-associate into multicellular clusters. Also floating in the supernatant are single, often dead cells, which present a challenge in collecting viable PDX clusters for downstream encapsulation into hydrogels for 3D cell culture. In order to separate these single cells from live cell clusters, we have employed density step gradient centrifugation. The protocol described here allows for the depletion of non-viable single cells from the healthy population of cell clusters that will be used for further in vitro experimentation. In our studies, we incorporate the 3D cultures in microfluidic plates which allow for media perfusion during culture. After assessing the resultant cultures using a fluorescent image-based viability assay of purified versus non-purified cells, our results show that this additional separation step substantially reduced the number of non-viable cells from our cultures.


Assuntos
Técnicas de Cultura de Células , Xenoenxertos , Hidrogéis/química , Microfluídica , Animais , Sobrevivência Celular , Centrifugação com Gradiente de Concentração , Modelos Animais de Doenças , Humanos , Processamento de Imagem Assistida por Computador , Camundongos , Coloração e Rotulagem
20.
Tissue Eng Part A ; 26(23-24): 1332-1348, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32829674

RESUMO

A few treatment options exist for patients experiencing xerostomia due to hyposalivation that occurs as a result of disease or injury to the gland. An opportunity for a permanent solution lies in the field of salivary gland replacement through tissue engineering. Recent success emboldens in the vision of producing a tissue-engineered salivary gland composed of differentiated salivary epithelial cells that are able to differentiate to form functional units that produce and deliver saliva to the oral cavity. This vision is augmented by advances in understanding cellular mechanisms that guide branching morphogenesis and salivary epithelial cell polarization in both acinar and ductal structures. Growth factors and other guidance cues introduced into engineered constructs help to develop a more complex glandular structure that seeks to mimic native salivary gland tissue. This review describes the separate epithelial phenotypes that make up the gland, and it describes their relationship with the other cell types such as nerve and vasculature that surround them. The review is organized around the links between the native components that form and contribute to various aspects of salivary gland development, structure, and function and how this information can drive the design of functional tissue-engineered constructs. In addition, we discuss the attributes of various biomaterials commonly used to drive function and form in engineered constructs. The review also contains a current description of the state-of-the-art of the field, including successes and challenges in creating materials for preclinical testing in animal models. The ability to integrate biomolecular cues in combination with a range of materials opens the door to the design of increasingly complex salivary gland structures that, once accomplished, can lead to breakthroughs in other fields of tissue engineering of epithelial-based exocrine glands or oral tissues.


Assuntos
Glândulas Salivares , Engenharia Tecidual , Xerostomia , Células Acinares , Animais , Células Epiteliais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA