Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bioorg Chem ; 126: 105918, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35696765

RESUMO

Cancer is one of the most dangerous diseases harvesting millions of lives every year globally, which mandates the development of new therapies. In this report, we designed and synthesized a novel series of compounds based on the structure of lapatinib and AF8c, a compound we developed and reported previously, to target EGFR kinase. The series was assayed against a panel of 60 cancer cell lines at the National Cancer Institute (NCI). Compounds 4a, 4f, 4 g, and 4 l showed high efficacy against melanoma, colon, and blood cancers, with 4a being the most effective. The evaluation of the potency of 4a against the 60 cell lines in a five-dose assay revealed a significant potency compared to lapatinib against melanoma, colon, and blood cancers. In vitro enzyme assay over 30 kinases showed significant potency against EGFR and high selectivity to EGFR among the tested kinases. A molecular modeling study of 4a and lapatinib inside the pockets of EGFR revealed that both compounds bind strongly inside the ATP-binding pocket of the EGFR kinase domain. Therefore, we present 4a as a novel EGFR kinase inhibitor with potent in vitro cellular activity against diverse types of cancer cells.


Assuntos
Antineoplásicos , Melanoma , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Receptores ErbB , Humanos , Lapatinib/farmacologia , Estrutura Molecular , Inibidores de Proteínas Quinases , Pirimidinas/química , Relação Estrutura-Atividade
2.
Bioorg Chem ; 103: 104121, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32745753

RESUMO

A series of diarylurea derivatives comprising 2,4-diarylpyrimidines were synthesized based on a combination of postulated molecular hybridization design and failed-ligands repurposing approaches, which enabled the discovery of novel potential antiproliferative agents. Towards credible biological evaluation, an in vitro anticancer activity assay was conducted employing a library of 60 cancer cell lines constituting nine panels representing blood, lung, colon, CNS, skin, ovary, renal, prostate, and breast cancers. The results revealed high effectiveness and broad-spectrum anticancer activity of compounds 4m and 4g. Five-dose assay of compounds 4m and 4g proved their high potency that surpassed that of four standard kinase inhibitors FDA-approved anticancer drugs against many cancer cells. Towards the identification of their molecular target, screening of kinase inhibitory profile employing a panel of 51 kinases involved in cancer revealed inhibition of several kinases from the platelet-derived growth factor/vascular endothelial growth factor receptor (PVR) kinase family, which might mediate, at least in part, the antiproliferative activity. Molecular docking of 4g into the crystal structure of the Feline McDonough Sarcoma (FMS) kinase predicted that it binds to a pocket formed by the juxtamembrane domain, the catalytic loop, and the αE helix, thus stabilizing the inhibited conformation of the kinase. Flow cytometric study of the cytotoxic effects of compound 4g in A549 cells showed it induces dose- and time-dependent apoptotic events leading to cell death. Collectively, this work presents compound 4g as a potential broad-spectrum anticancer agent against multiple cancer types.


Assuntos
Antineoplásicos/farmacologia , Descoberta de Drogas , Pirimidinas/farmacologia , Ureia/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Ligantes , Estrutura Molecular , Pirimidinas/química , Relação Estrutura-Atividade , Ureia/análogos & derivados , Ureia/química
3.
Med Res Rev ; 39(1): 349-385, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29949198

RESUMO

Serine/threonine kinases (STKs) represent the majority of discovered kinases to date even though a few Food and Drug Administration approved STKs inhibitors are reported. The third millennium came with the discovery of an important group of STKs that reshaped our understanding of several biological signaling pathways. This family was named death-associated protein kinase family (DAPK family). DAPKs comprise five members (DAPK1, DAPK2, DAPK3, DRAK1, and DRAK2) and belong to the calcium/calmodulin-dependent kinases domain. As time goes on, the list of biological functions of this family is constantly updated. The most extensively studied member is DAPK1 (based on the publications number and Protein Data Bank reported crystal structures) that plays fundamental biological roles depending on the cellular context. DAPK1 regulates apoptosis, autophagy, contributes to the pathogenesis of Alzheimer's disease, acts as a tumor suppressor, inhibits metastasis, mediates the body responses to viral infections, and regulates the synaptic plasticity and depression. For their biological roles, several DAPKs' modulators have been reported for treatment of many diseases as well as acting as probe compounds to facilitate the understanding of the biological functions elicited by this family. Despite that, the number of reported modulators is still limited and more research needs to be conducted on the discovery of novel strategies to activate or inhibit this family. In this report, we aim at drawing more attention to this family by reviewing the recent updates regarding the structure, biological roles, and regulation of this family. In addition, the small-molecule modulators of this family are reviewed in details with their potential therapeutic outcomes evaluated to help medicinal chemists develop more potent and selective possible drug candidates.


Assuntos
Proteínas Quinases Associadas com Morte Celular/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Proteínas Quinases Associadas com Morte Celular/genética , Proteínas Quinases Associadas com Morte Celular/metabolismo , Aprovação de Drogas , Humanos , Família Multigênica , Inibidores de Proteínas Quinases/química , Resultado do Tratamento
4.
Eur J Med Chem ; 141: 657-675, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29107425

RESUMO

Tyrosine kinases including LCK and FMS are involved in inflammatory disorders as well as many types of cancer. Our team has designed and synthesized thirty novel pyrimidine based inhibitors targeting LCK, classified into four different series (amides, ureas, imines (Schiff base) and benzylamines). Twelve of them showed nanomolar IC50 values. Compound 7g showed excellent selectivity profile and was selectively potent over FMS kinase (IC50 value of 4.6 nM). Molecular docking study was performed to help us rationalize the obtained results and predict the possible binding mode for our compounds in both LCK and FMS. Based on the obtained biological assay data and modelling results, a detailed SAR study was discussed. As a further testing regarding the anti-inflammatory effect of the new compounds, in vitro cellular assay over RAW 264.7 macrophages was performed. Compound 7g exhibited excellent anti-inflammatory effect. Therefore, we report the design of novel phenoxypyrimidine derivatives as potent and selective LCK inhibitors and the discovery of 7g as potent and selective FMS/LCK dual inhibitor for the potential application in inflammatory disorders including rheumatoid arthritis (RA).


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Inflamação/tratamento farmacológico , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Receptores de Fator Estimulador de Colônias/antagonistas & inibidores , Animais , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/química , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Inflamação/metabolismo , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Camundongos , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Pirimidinas/síntese química , Pirimidinas/química , Células RAW 264.7 , Relação Estrutura-Atividade
5.
Bioorg Med Chem Lett ; 25(22): 5147-54, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26475520

RESUMO

Coexpression of EGFR and HER2 has been found in many tumors such as breast, ovarian, colon and prostate cancers, with poor prognosis of the patients. Herein, our team has designed and synthesized new eighteen compounds with 6-substituted 4-anilinoquinazoline core to selectively inhibit EGFR/HER2 tyrosine kinases. Twelve compounds (8a-8d, 9a, 9c, 9d, 10a, 10c, 11b, 14, and 15) showed nanomolar range of IC50 values on EGFR and/or HER2 kinases. Accordingly, a detailed structure activity relationship (SAR) was established. A molecular docking study demonstrated the favorable binding modes of 8d, 9b, 9d and 10d at the ATP active site of both kinases. A kinase selectivity profile performed for compound 8d showed great selectivity for EGFR and HER2. In addition, 8d, 9c, and 9d exerted selective promising cytotoxic activity over BT-474 cell line with IC50 values of 2.70, 1.82 and 1.95 µM, respectively. From these results, we report analogs 8d, 9c, and 9d as promising candidates for the discovery of well-balanced compounds in terms of the kinase inhibitory potency and antiproliferative activity.


Assuntos
Compostos de Anilina/farmacologia , Receptores ErbB/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Quinazolinas/farmacologia , Receptor ErbB-2/antagonistas & inibidores , Compostos de Anilina/síntese química , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/síntese química , Quinazolinas/síntese química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA