Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
NanoImpact ; 33: 100499, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38369193

RESUMO

Graphene is a 2D-material with many useful properties such as flexibility, elasticity, and conductivity among others. Graphene could therefore become a material used in many occupational fields in the future, which can give rise to occupational exposure. Today, exposure is unknown, due to the lack of efficient measuring techniques for occupational exposure to graphene. Readily available screening techniques for air sampling and -analysis are either nonspecific or nonquantitative. Quantifying materials from the broad graphene family by an easy-to-use method is important for the large-scale industrial application of graphene, especially when for the safety of working environment. Graphene consists primarily of elemental carbon, and the present study evaluates the organic carbon/elemental carbon (OC/EC)-technique for exposure assessment. The purpose of this work is to evaluate the OC/EC analysis technique as an efficient and easy-to-use method for quantification of occupational exposure to graphene. Methods that can identify graphene would be preferable for screening, but they are time consuming and semi-quantitative and therefore not suited for quantitative work environment assessments. The OC/EC-technique is a thermal optical analysis (TOA), that quantitively determines the amount of and distinguishes between two different types of carbon, organic and elemental. The technique is standardised, well-established and among other things used for diesel exposure measurements (ref standard). OC/EC could therefore be a feasible measuring technique to quantitively determine occupational exposure to graphene. The present evaluation of the technique provides an analytical method that works quantitatively for graphene, graphene oxide and reduced graphene oxide. Interestingly, the TOA technique makes it possible to distinguish between the three graphene forms used in this study. The technique was tested in an industrial setting and the outcome suggests that the technique is an efficient monitoring technique to be used in combination with characterisation techniques like for example Raman spectroscopy, scanning electron microscopy and atomic force microscopy.


Assuntos
Grafite , Exposição Ocupacional , Monitoramento Ambiental/métodos , Exposição Ocupacional/análise , Carbono/análise
2.
Toxicol In Vitro ; 95: 105767, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38122908

RESUMO

Cytochrome P450 1 A (CYP1A) is a key enzyme in the metabolism of the polycyclic aromatic hydrocarbon (PAH) benzo[a]pyrene (BaP) in animals, and a biomarker for environmental PAH exposure. The common antimycotic imidazole drug clotrimazole (CLO) has been detected in the aquatic environment and likely co-exists with BaP. Like BaP, CLO can bind to CYP1A enzymes and can act as a CYP1A inhibitor. Co-exposure of BaP with CLO significantly delayed BaP elimination in a fish liver cell line (PLHC-1). Intracellular BaP concentration was 2.4 times higher after 6 h in co-exposed cells, compared to cells exposed to BaP alone. Higher BaP concentrations in cells co-exposed to CLO positively correlated with CLO dose, indicating CLO-mediated delays in BaP clearance. After 24 h, BaP was undetectable irrespective of CLO co-exposure. In contrast, intracellular CLO concentrations remained constant over the 72 h experimental period. Co-exposure of BaP with CLO caused synergistic and time-dependent increases on the CYP1A biomarker both on CYP1A mRNA levels and on CYP1A enzyme activity, in accordance with an apparent delayed BaP elimination in the presence of CLO. These results indicate a toxicokinetic interaction between BaP and CLO on the CYP1A enzyme that delays metabolic clearance of BaP.


Assuntos
Clotrimazol , Hidrocarbonetos Policíclicos Aromáticos , Animais , Clotrimazol/toxicidade , Antifúngicos , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Benzo(a)pireno/toxicidade , Sistema Enzimático do Citocromo P-450 , Biomarcadores/metabolismo
3.
Respir Physiol Neurobiol ; 301: 103899, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35364290

RESUMO

Respiratory tract lining fluid (RTLF) is an important component of the lung epithelial barrier. Pathological changes in RTLF may cause increased permeability of the epithelial barrier, but changes within RTLF are difficult to assess non-invasively. The aim of this study was to explore if the use of the non-invasive measurement technique, Particles in Exhaled Air (PEx) and blood test were useful in assessing epithelial barrier, and if cigarette smoking affects the relationship. In a general population subcohort from the European Community Respiratory Health Survey III in Iceland (n = 112), we collected RTLF droplets using the PEx technique, in conjunction with blood samples and questionnaire data. We measured surfactant protein A (SP-A) in the collected plasma and PEx samples. Participants were defined as healthy if they did not currently have asthma, were non-smokers and had forced expiratory volume in one second ≥ 80% of predicted value. Of the 112 participants, 97 were healthy and 15 were current smokers. There was no correlation between plasma and PEx SP-A levels. However, the ratio of plasma to PEx SP-A was significantly higher in smokers compared to healthy subjects. The lack of correlation between PEx and plasma SP-A in healthy participants, indicates that SP-A in plasma does not diffuse freely over the lung epithelial barrier. However, the lung epithelial barrier may be injured by smoking, leading to diffusion of SP-A across the barrier into the bloodstream, causing an increased ratio of plasma to PEx SP-A.


Assuntos
Asma , Proteína A Associada a Surfactante Pulmonar , Expiração , Volume Expiratório Forçado , Humanos , Pulmão/metabolismo , Proteína A Associada a Surfactante Pulmonar/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA