Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Cancers (Basel) ; 16(7)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38611048

RESUMO

HBV is the most common risk factor for HCC development, accounting for almost 50% of cases worldwide. Despite significant advances in immunotherapy, there is limited information on the HBV-HCC tumor microenvironment (TME), which may influence the response to checkpoint inhibitors. Here, we characterize the TME in a unique series of liver specimens from HBV-HCC patients to identify who might benefit from immunotherapy. By combining an extensive immunohistochemistry analysis with the transcriptomic profile of paired liver samples (tumor vs. nontumorous tissue) from 12 well-characterized Caucasian patients with HBV-HCC, we identified two distinct tumor subtypes that we defined immune-high and immune-low. The immune-high subtype, seen in half of the patients, is characterized by a high number of infiltrating B and T cells in association with stromal activation and a transcriptomic profile featuring inhibition of antigen presentation and CTL activation. All the immune-high tumors expressed high levels of CTLA-4 and low levels of PD-1, while PD-L1 was present only in four of six cases. In contrast, the immune-low subtype shows significantly lower lymphocyte infiltration and stromal activation. By whole exome sequencing, we documented that four out of six individuals with the immune-low subtype had missense mutations in the CTNNB1 gene, while only one patient had mutations in this gene in the immune-high subtype. Outside the tumor, there were no differences between the two subtypes. This study identifies two distinctive immune subtypes in HBV-associated HCC, regardless of the microenvironment observed in the surrounding nontumorous tissue, providing new insights into pathogenesis. These findings may be instrumental in the identification of patients who might benefit from immunotherapy.

2.
Front Immunol ; 14: 1204907, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37744383

RESUMO

Introduction: Tumor-initiating cells (TICs) are rare, stem-like, and highly malignant. Although intravenous hepatitis B and C immunoglobulins have been used for HBV and HCV neutralization in patients, their tumor-inhibitory effects have not yet been examined. Hepatitis B immunoglobulin (HBIG) therapy is employed to reduce hepatocellular carcinoma (HCC) recurrence in patients after living donor liver transplantations (LDLT). Hypothesis: We hypothesized that patient-derived intravenous immunoglobulin (IVIG) binding to HCC associated TICs will reduce self-renewal and cell viability driven by ß-CATENIN-downstream pathways. ß-CATENIN activity protected TICs from IVIG effects. Methods: The effects of HBIG and HCIG binding to TICs were evaluated for cell viability and self-renewal. Results: Inhibition of ß-CATENIN pathway(s) augmented TIC susceptibility to HBIG- and HCIG-immunotherapy. HBV X protein (HBx) upregulates both ß-CATENIN and NANOG expression. The co-expression of constitutively active ß-CATENIN with NANOG promotes self-renewal ability and tumor-initiating ability of hepatoblasts. HBIG bound to HBV+ cells led to growth inhibition in a TIC subset that expressed hepatitis B surface antigen. The HBx protein transformed cells through ß-CATENIN-inducible lncRNAs EGLN3-AS1 and lnc-ß-CatM. Co-expression of constitutively active ß-CATENIN with NANOG promoted self-renewal ability of TICs through EGLN3 induction. ß-CATENIN-induced lncRNAs stabilized HIF2 to maintain self-renewal of TICs. Targeting of EGLN3-AS1 resulted in destabilization of EZH2-dependent ß-CATENIN activity and synergized cell-killing of TICs by HBIG or HCIG immunotherapy. Discussion: Taken together, WNT and stemness pathways induced HIF2 of TICs via cooperating lncRNAs resulting in resistance to cancer immunotherapy. Therefore, therapeutic use of IVIG may suppress tumor recurrence through inhibition of TICs.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Transplante de Fígado , RNA Longo não Codificante , beta Catenina , Humanos , beta Catenina/genética , Carcinoma Hepatocelular/terapia , Imunoglobulinas Intravenosas , Imunoterapia , Neoplasias Hepáticas/terapia , Doadores Vivos , Recidiva Local de Neoplasia , RNA Longo não Codificante/genética
3.
Cell Rep ; 41(5): 111528, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36302375

RESUMO

The emergence and global spread of the SARS-CoV-2 Omicron variants, which carry an unprecedented number of mutations, raise serious concerns due to the reduced efficacy of current vaccines and resistance to therapeutic antibodies. Here, we report the generation and characterization of two potent human monoclonal antibodies, NA8 and NE12, against the receptor-binding domain of the SARS-CoV-2 spike protein. NA8 interacts with a highly conserved region and has a breadth of neutralization with picomolar potency against the Beta variant and the Omicron BA.1 and BA.2 sublineages and nanomolar potency against BA.2.12.1 and BA.4. Combination of NA8 and NE12 retains potent neutralizing activity against the major SARS-CoV-2 variants of concern. Cryo-EM analysis provides the structural basis for the broad and complementary neutralizing activity of these two antibodies. We confirm the in vivo protective and therapeutic efficacies of NA8 and NE12 in the hamster model. These results show that broad and potent human antibodies can overcome the continuous immune escape of evolving SARS-CoV-2 variants.


Assuntos
Antineoplásicos Imunológicos , COVID-19 , Humanos , SARS-CoV-2 , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais/genética , Testes de Neutralização , Anticorpos Antivirais/uso terapêutico , Proteínas do Envelope Viral , Glicoproteínas de Membrana/genética , Anticorpos Neutralizantes/uso terapêutico
4.
Nat Rev Gastroenterol Hepatol ; 19(11): 727-745, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35859026

RESUMO

Globally, 296 million people are infected with hepatitis B virus (HBV), and approximately one million people die annually from HBV-related causes, including liver cancer. Although there is a preventative vaccine and antiviral therapies suppressing HBV replication, there is no cure. Intensive efforts are under way to develop curative HBV therapies. Currently, only a few biomarkers are available for monitoring or predicting HBV disease progression and treatment response. As new therapies become available, new biomarkers to monitor viral and host responses are urgently needed. In October 2020, the International Coalition to Eliminate Hepatitis B Virus (ICE-HBV) held a virtual and interactive workshop on HBV biomarkers endorsed by the International HBV Meeting. Various stakeholders from academia, clinical practice and the pharmaceutical industry, with complementary expertise, presented and participated in panel discussions. The clinical utility of both classic and emerging viral and immunological serum biomarkers with respect to the course of infection, disease progression, and response to current and emerging treatments was appraised. The latest advances were discussed, and knowledge gaps in understanding and interpretation of HBV biomarkers were identified. This Roadmap summarizes the strengths, weaknesses, opportunities and challenges of HBV biomarkers.


Assuntos
Hepatite B Crônica , Hepatite B , Humanos , Vírus da Hepatite B , Hepatite B Crônica/diagnóstico , Hepatite B Crônica/tratamento farmacológico , Antivirais/uso terapêutico , Replicação Viral , Biomarcadores , Progressão da Doença , Hepatite B/diagnóstico , Hepatite B/tratamento farmacológico
5.
J Hepatocell Carcinoma ; 8: 1399-1413, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34849372

RESUMO

INTRODUCTION: HCC is the third leading cause of cancer-related death worldwide, with chronic viral hepatitis accounting for more than 70% of the cases. Therapeutic options are limited and ineffective. The increasing use of immune-based therapies in solid tumors highlights the need to expand our knowledge on the immunologic microenvironment of HCC. METHODS: Access to liver samples from 20 well-characterized patients with HCC associated with HCV (n = 9) or HBV (n = 11) gave us the opportunity to study the immunologic landscape in these tumors. For each patient, RNA-sequencing was performed on the tumor and surrounding nontumorous tissue. RESULTS: We found that both HCV- and HBV-HCC are associated with a predominance of downregulated genes (74% and 67%, respectively). Analysis of the immune landscape using a curated gene list showed 216 of 2481 (9%) immune genes in HCV-HCC and 164 of 2560 (6%) in HBV-HCC. However, only 8 immune genes (4%) were upregulated in HCV-HCC and 27 (16.5%) in HBV-HCC. HCV-HCC was characterized by an enrichment of downregulated genes related to T-cell activation and oxidative stress. The dramatic downregulation of immune genes related to T-cell activation in HCV-HCC prompted us to perform an extensive immunohistochemistry analysis on paraffin-embedded liver specimen. Interestingly, we found a significant reduction of immune-cell infiltration (CD3, CD8 and CD20 positive cells) within the tumor. Moreover, we observed that HCV-HCC is characterized by an enrichment of M2-like CD68-positive cells. These data are consistent with the dramatic downregulation of immune-cell infiltration seen in HCV-HCC. Conversely, HBV-HCC was characterized by upregulation of genes related to monocyte/macrophage activation and cell cycle control, and downregulation of genes involved in various cell metabolisms. CONCLUSION: This study demonstrates a distinctive molecular signature and immune landscape in HCC of different viral etiology, which could provide new insights into pathogenesis and lead to the development of novel immune-based therapies.

6.
Viruses ; 13(5)2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-34064419

RESUMO

Hepatitis D virus (HDV) is a small, defective RNA virus that depends on hepatitis B virus (HBV) for virion assembly and transmission. It replicates within the nucleus of hepatocytes and interacts with several cellular proteins. Chronic hepatitis D is a severe and progressive disease, leading to cirrhosis in up to 80% of cases. A high proportion of patients die of liver decompensation or hepatocellular carcinoma (HCC), but the lack of large prospective studies has made it difficult to precisely define the rate of these long-term complications. In particular, the question of whether HDV is an oncogenic virus has been a matter of debate. Studies conducted over the past decade provided evidence that HDV is associated with a significantly higher risk of developing HCC compared to HBV monoinfection. However, the mechanisms whereby HDV promotes liver cancer remain elusive. Recent data have demonstrated that the molecular profile of HCC-HDV is unique and distinct from that of HBV-HCC, with an enrichment of upregulated genes involved in cell-cycle/DNA replication, and DNA damage and repair, which point to genome instability as an important mechanism of HDV hepatocarcinogenesis. These data suggest that HBV and HDV promote carcinogenesis by distinct molecular mechanisms despite the obligatory dependence of HDV on HBV.


Assuntos
Carcinoma Hepatocelular/virologia , Hepatite D/virologia , Vírus Delta da Hepatite/genética , Vírus Delta da Hepatite/patogenicidade , Neoplasias Hepáticas/virologia , Carcinogênese , Genoma Viral , Vírus da Hepatite B/genética , Vírus da Hepatite B/patogenicidade , Hepatite D Crônica/virologia , Hepatócitos/patologia , Hepatócitos/virologia , Humanos , Cirrose Hepática , RNA Viral/genética , Montagem de Vírus
7.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33888584

RESUMO

Older age at the time of infection with hepatitis viruses is associated with an increased risk of liver fibrosis progression. We hypothesized that the pace of fibrosis progression may reflect changes in gene expression within the aging liver. We compared gene expression in liver specimens from 54 adult donors without evidence of fibrosis, including 36 over 40 y old and 18 between 18 and 40 y old. Chitinase 3-like 1 (CHI3L1), which encodes chitinase-like protein YKL-40/CHI3L1, was identified as the gene with the greatest age-dependent increase in expression in liver tissue. We investigated the cellular source of CHI3L1 in the liver and its function using liver tissue specimens and in vitro models. CHI3L1 expression was significantly higher in livers of patients with cirrhosis of diverse etiologies compared with controls represented by patients who underwent liver resection for hemangioma. The highest intrahepatic CHI3L1 expression was observed in cirrhosis due to hepatitis D virus, followed by hepatitis C virus, hepatitis B virus, and alcohol-induced cirrhosis. In situ hybridization of CHI3L1 messenger RNA (mRNA) identified hepatocytes as the major producers of CHI3L1 in normal liver and in cirrhotic tissue, wherein hepatocytes adjacent to fibrous septa showed higher CHI3L1 expression than did those in more distal areas. In vitro studies showed that recombinant CHI3L1 promotes proliferation and activation of primary human hepatic stellate cells (HSCs), the major drivers of liver fibrosis. These findings collectively demonstrate that CHI3L1 promotes liver fibrogenesis through a direct effect on HSCs and support a role for CHI3L1 in the increased susceptibility of aging livers to fibrosis progression.


Assuntos
Proteína 1 Semelhante à Quitinase-3/metabolismo , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Adolescente , Adulto , Envelhecimento/fisiologia , Biomarcadores/metabolismo , Proteína 1 Semelhante à Quitinase-3/fisiologia , Quitinases/metabolismo , Feminino , Expressão Gênica/genética , Hepacivirus/patogenicidade , Células Estreladas do Fígado/patologia , Hepatite C/metabolismo , Hepatócitos/metabolismo , Hepatócitos/virologia , Humanos , Fígado/citologia , Masculino
8.
Clin Transl Gastroenterol ; 11(11): e00273, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33259165

RESUMO

INTRODUCTION: The aim of this study was to determine the role of hepatitis E virus (HEV) infection in a large cohort of prospectively enrolled patients with severe acute liver injury (ALI). METHODS: Serum samples from 594 consecutive adults enrolled between 2008 and 2018 in the US Acute Liver Failure Study Group ALI registry were tested for anti-HEV IgM and anti-HEV IgG levels. Those with detectable anti-HEV IgM underwent further testing for HEV RNA using real-time polymerase chain reaction. RESULTS: The median age of patients was 38 years; 41% were men and 72% Caucasian. Etiologies of ALI included acetaminophen hepatotoxicity (50%), autoimmune hepatitis (8.9%), hepatitis B virus (8.9%), and idiosyncratic drug-induced liver injury (7.9%). Overall, 62 patients (10.4%) were negative for anti-HEV IgM but positive for IgG, whereas only 3 men (0.5%) were positive for both anti-HEV IgM and IgG. These 3 cases were initially diagnosed as having indeterminate, HEV, and hepatitis B virus-related ALI. One of these patients had detectable HEV RNA genotype 3, and another anti-HEV IgM+ patient had detectable HEV antigens by immunohistochemistry on liver biopsy. On multivariate modeling, older (odds ratio: 1.99) and non-Caucasian subjects (odds ratio: 2.92) were significantly more likely to have detectable anti-HEV IgG (P < 0.0001). DISCUSSION: Acute HEV infection is an infrequent cause of ALI in hospitalized North American adults. The anti-HEV IgG+ patients were significantly older and more likely to be non-Caucasian. These data are consistent with other population-based studies that indicate exposure to HEV in the general US population is declining over time and might reflect a cohort effect.


Assuntos
Vírus da Hepatite E/isolamento & purificação , Hepatite E/epidemiologia , Falência Hepática Aguda/etiologia , Acetaminofen/efeitos adversos , Adulto , Fatores Etários , Anticorpos Antivirais , Biópsia , Doença Hepática Induzida por Substâncias e Drogas/complicações , Doença Hepática Induzida por Substâncias e Drogas/epidemiologia , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Feminino , Seguimentos , Geografia , Anticorpos Anti-Hepatite/análise , Anticorpos Anti-Hepatite/imunologia , Antígenos de Hepatite/imunologia , Hepatite B/complicações , Hepatite B/epidemiologia , Hepatite B/virologia , Hepatite E/sangue , Hepatite E/complicações , Hepatite E/virologia , Vírus da Hepatite E/imunologia , Hepatite Autoimune/complicações , Hepatite Autoimune/epidemiologia , Hepatite Autoimune/imunologia , Humanos , Fígado/imunologia , Fígado/patologia , Fígado/virologia , Falência Hepática Aguda/diagnóstico , Falência Hepática Aguda/epidemiologia , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Fatores de Risco , Estudos Soroepidemiológicos , Índice de Gravidade de Doença , Estados Unidos/epidemiologia , Adulto Jovem
9.
mBio ; 11(6)2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33203756

RESUMO

Historical studies conducted in chimpanzees gave us the opportunity to investigate the basis for the different severities of liver damage and disease outcome associated with infection with wild-type hepatitis B virus (HBV) versus a precore HBV mutant, HBV/hepatitis D virus (HDV) coinfection, and HDV superinfection. Weekly samples from 9 chimpanzees were studied for immune responses by measuring plasma levels of 29 cytokines in parallel with alanine aminotransferase (ALT) levels and viral kinetics. Comparison of classic acute hepatitis B (AHB) with severe or progressive AHB and HBV/HDV coinfection or superinfection identified distinct cytokine profiles. Classic AHB (mean ALT peak, 362 IU/liter) correlated with an early and significant induction of interferon alpha-2 (IFN-α2), IFN-γ, interleukin-12 p70 (IL-12 p70), and IL-17A. In contrast, these cytokines were virtually undetectable in severe AHB (mean ALT peak, 1,335 IU/liter), characterized by significant elevations of IL-10, tumor necrosis factor alpha (TNF-α), and MIP-1ß. In progressive AHB (mean ALT peak, 166 IU/liter), there was a delayed and lower-magnitude induction of cytokines. The ALT peak was also delayed (mean, 23.5 weeks) compared to those of classic (13.5 weeks) and severe AHB (7.5 weeks). HBV/HDV coinfection correlated with significantly lower levels of IFN-α2, IFN-γ, and IL-17A, associated with the presence of multiple proinflammatory cytokines, including IL-1α, IL-1ß, IL-2, IL-4, IL-5, IL-6, IL-10, and IL-15. Conversely, HDV superinfection induced the highest ALT peak (1,910 IU/liter) and was associated with a general suppression of cytokines. Our data demonstrate that the most severe liver damage, caused by an HBV precore mutant and HDV, correlated with restricted cytokine expression and lack of Th1 response, raising the question of whether these viruses are directly cytopathic.IMPORTANCE Studies performed in chimpanzees at the National Institutes of Health (NIH) demonstrated a significant difference in ALT levels during acute hepatitis of different viral etiologies, with a hierarchy in the extent of liver damage according to the infecting virus: the highest level was in HDV superinfection, followed by infection with a precore HBV mutant, HBV/HDV coinfection, and, lastly, wild-type HBV infection. Our study demonstrates that both the virus and host are important in disease pathogenesis and offers new insights into their roles. We found that distinct cytokine profiles were associated with disease severity and clinical outcome. In particular, resolution of classic acute hepatitis B (AHB) correlated with a predominant Th1 response, whereas HBV/HDV coinfection showed a predominant proinflammatory response. Severe AHB and HDV superinfection showed a restricted cytokine profile and no evidence of Th1 response. The lack of cytokines associated with adaptive T-cell responses toward the precore HBV mutant and HDV superinfection argues in favor of a direct cytopathic effect of these viruses.


Assuntos
Citocinas/metabolismo , Vírus da Hepatite B/imunologia , Hepatite B/virologia , Hepatite D/virologia , Vírus Delta da Hepatite/imunologia , Doença Aguda , Animais , Coinfecção , Modelos Animais de Doenças , Humanos , Estudos Longitudinais , Pan troglodytes , Índice de Gravidade de Doença
10.
Gastroenterol Hepatol (N Y) ; 14(6): 342-351, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30166948

RESUMO

Hepatitis D virus (HDV) is a defective RNA virus that requires the hepatitis B surface antigen (HBsAg) of the hepatitis B virus (HBV) for its assembly, release, and transmission. HDV is highly pathogenic, causing the least common, but most severe, form of chronic viral hepatitis at all ages. Although significant advances have been made in the treatment of chronic viral hepatitis, targeting HDV remains a major challenge because of the unconventional nature of this virus and the severity of its disease. The virus contains a ribonucleoprotein complex formed by the RNA genome with a single structural protein, delta antigen (HDAg), which exists in 2 forms (small and large HDAg) and is coated by HBsAg. Farnesylation of the large HDAg is essential for anchoring the ribonucleoprotein to HBsAg for the assembly of virion particles. HDV enters into hepatocytes by using the HBV receptor, the sodium taurocholate cotransporting polypeptide (NTCP). Unlike other RNA viruses, HDV does not encode its own polymerase but exploits the host RNA polymerase II for replication. Thus, in contrast to HBV and hepatitis C virus, which possess virus-specific enzymes that can be targeted by specific inhibitors, the lack of a virus-specific polymerase makes HDV a particularly challenging therapeutic target. Treatment of hepatitis D remains unsatisfactory, and interferon-α has been the only approved drug over the past 30 years. This article examines the unconventional nature of HDV, the current management of chronic hepatitis D, and how new insights from the HDV life cycle have led to the development of 3 novel classes of drugs (NTCP receptor inhibitors, farnesyltransferase inhibitors, and nucleic acid polymers) that are currently under clinical evaluation.

11.
Mol Cancer Res ; 16(9): 1406-1419, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29858376

RESUMO

There is limited data on the molecular mechanisms whereby hepatitis D virus (HDV) promotes liver cancer. Therefore, serum and liver specimens obtained at the time of liver transplantation from well-characterized patients with HDV-HCC (n = 5) and with non-HCC HDV cirrhosis (n = 7) were studied using an integrated genomic approach. Transcriptomic profiling was performed using laser capture-microdissected (LCM) malignant and nonmalignant hepatocytes, tumorous and nontumorous liver tissue from patients with HDV-HCC, and liver tissue from patients with non-HCC HDV cirrhosis. HDV-HCC was also compared with hepatitis B virus (HBV) HBV-HCC alone, and hepatitis C virus (HCV) HCV-HCC. HDV malignant hepatocytes were characterized by an enrichment of upregulated transcripts associated with pathways involved in cell-cycle/DNA replication, damage, and repair (Sonic Hedgehog, GADD45, DNA-damage-induced 14-3-3σ, cyclins and cell-cycle regulation, cell cycle: G2-M DNA-damage checkpoint regulation, and hereditary breast cancer). Moreover, a large network of genes identified functionally relate to DNA repair, cell cycle, mitotic apparatus, and cell division, including 4 cancer testis antigen genes, attesting to the critical role of genetic instability in this tumor. Besides being overexpressed, these genes were also strongly coregulated. Gene coregulation was high not only when compared with nonmalignant hepatocytes, but also to malignant hepatocytes from HBV-HCC alone or HCV-HCC. Activation and coregulation of genes critically associated with DNA replication, damage, and repair point to genetic instability as an important mechanism of HDV hepatocarcinogenesis. This specific HDV-HCC trait emerged also from the comparison of the molecular pathways identified for each hepatitis virus-associated HCC. Despite the dependence of HDV on HBV, these findings suggest that HDV and HBV promote carcinogenesis by distinct molecular mechanisms.Implications: This study identifies a molecular signature of HDV-associated hepatocellular carcinoma and suggests the potential for new biomarkers for early diagnostics. Mol Cancer Res; 16(9); 1406-19. ©2018 AACR.


Assuntos
Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/virologia , Vírus Delta da Hepatite/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/virologia , Proteína BRCA1/genética , Carcinoma Hepatocelular/sangue , Carcinoma Hepatocelular/patologia , DNA Viral/genética , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Regulação Viral da Expressão Gênica , Hepatite D Crônica/sangue , Hepatite D Crônica/genética , Hepatite D Crônica/patologia , Hepatite D Crônica/virologia , Vírus Delta da Hepatite/isolamento & purificação , Humanos , Neoplasias Hepáticas/sangue , Neoplasias Hepáticas/patologia , Masculino , Pessoa de Meia-Idade , RNA Viral/genética
12.
PLoS Pathog ; 14(3): e1006916, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29538454

RESUMO

Entry of hepatitis C virus (HCV) into hepatocytes is a complex process that involves numerous cellular factors, including the scavenger receptor class B type 1 (SR-B1), the tetraspanin CD81, and the tight junction (TJ) proteins claudin-1 (CLDN1) and occludin (OCLN). Despite expression of all known HCV-entry factors, in vitro models based on hepatoma cell lines do not fully reproduce the in vivo susceptibility of liver cells to primary HCV isolates, implying the existence of additional host factors which are critical for HCV entry and/or replication. Likewise, HCV replication is severely impaired within hepatocellular carcinoma (HCC) tissue in vivo, but the mechanisms responsible for this restriction are presently unknown. Here, we identify tumor-associated calcium signal transducer 2 (TACSTD2), one of the most downregulated genes in primary HCC tissue, as a host factor that interacts with CLDN1 and OCLN and regulates their cellular localization. TACSTD2 gene silencing disrupts the typical linear distribution of CLDN1 and OCLN along the cellular membrane in both hepatoma cells and primary human hepatocytes, recapitulating the pattern observed in vivo in primary HCC tissue. Mechanistic studies suggest that TACSTD2 is involved in the phosphorylation of CLDN1 and OCLN, which is required for their proper cellular localization. Silencing of TACSTD2 dramatically inhibits HCV infection with a pan-genotype effect that occurs at the level of viral entry. Our study identifies TACSTD2 as a novel regulator of two major HCV-entry factors, CLDN1 and OCLN, which is strongly downregulated in malignant hepatocytes. These results provide new insights into the complex process of HCV entry into hepatocytes and may assist in the development of more efficient cellular systems for HCV propagation in vitro.


Assuntos
Antígenos de Neoplasias/metabolismo , Carcinoma Hepatocelular/virologia , Moléculas de Adesão Celular/metabolismo , Claudina-1/metabolismo , Hepacivirus/patogenicidade , Hepatite C/virologia , Neoplasias Hepáticas/virologia , Ocludina/metabolismo , Antígenos de Neoplasias/genética , Carcinoma Hepatocelular/epidemiologia , Carcinoma Hepatocelular/metabolismo , Moléculas de Adesão Celular/genética , Claudina-1/genética , Regulação para Baixo , Hepatite C/complicações , Hepatite C/metabolismo , Hepatócitos/metabolismo , Hepatócitos/patologia , Hepatócitos/virologia , Humanos , Neoplasias Hepáticas/epidemiologia , Neoplasias Hepáticas/metabolismo , Ocludina/genética , Internalização do Vírus , Replicação Viral
13.
Gastroenterology ; 154(1): 195-210, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28918914

RESUMO

BACKGROUND & AIMS: Development of hepatocellular carcinoma (HCC) is associated with alterations in the transforming growth factor-beta (TGF-ß) signaling pathway, which regulates liver inflammation and can have tumor suppressor or promoter activities. Little is known about the roles of specific members of this pathway at specific of HCC development. We took an integrated approach to identify and validate the effects of changes in this pathway in HCC and identify therapeutic targets. METHODS: We performed transcriptome analyses for a total of 488 HCCs that include data from The Cancer Genome Atlas. We also screened 301 HCCs reported in the Catalogue of Somatic Mutations in Cancer and 202 from Cancer Genome Atlas for mutations in genome sequences. We expressed mutant forms of spectrin beta, non-erythrocytic 1 (SPTBN1) in HepG2, SNU398, and SNU475 cells and measured phosphorylation, nuclear translocation, and transcriptional activity of SMAD family member 3 (SMAD3). RESULTS: We found somatic mutations in at least 1 gene whose product is a member of TGF-ß signaling pathway in 38% of HCC samples. SPTBN1 was mutated in the largest proportion of samples (12 of 202, 6%). Unsupervised clustering of transcriptome data identified a group of HCCs with activation of the TGF-ß signaling pathway (increased transcription of genes in the pathway) and a group of HCCs with inactivation of TGF-ß signaling (reduced expression of genes in this pathway). Patients with tumors with inactivation of TGF-ß signaling had shorter survival times than patients with tumors with activation of TGF-ß signaling (P = .0129). Patterns of TGF-ß signaling correlated with activation of the DNA damage response and sirtuin signaling pathways. HepG2, SNU398, and SNU475 cells that expressed the D1089Y mutant or with knockdown of SPTBN1 had increased sensitivity to DNA crosslinking agents and reduced survival compared with cells that expressed normal SPTBN1 (controls). CONCLUSIONS: In genome and transcriptome analyses of HCC samples, we found mutations in genes in the TGF-ß signaling pathway in almost 40% of samples. These correlated with changes in expression of genes in the pathways; up-regulation of genes in this pathway would contribute to inflammation and fibrosis, whereas down-regulation would indicate loss of TGF-ß tumor suppressor activity. Our findings indicate that therapeutic agents for HCCs can be effective, based on genetic features of the TGF-ß pathway; agents that block TGF-ß should be used only in patients with specific types of HCCs.


Assuntos
Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Mutação/genética , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta/fisiologia , Idoso , Carcinoma Hepatocelular/mortalidade , Estudos de Casos e Controles , Análise por Conglomerados , Feminino , Humanos , Neoplasias Hepáticas/mortalidade , Masculino , Pessoa de Meia-Idade
14.
Hepatology ; 65(2): 678-693, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28114741

RESUMO

Exposure to genotoxins such as ethanol-derived acetaldehyde leads to DNA damage and liver injury and promotes the development of cancer. We report here a major role for the transforming growth factor ß/mothers against decapentaplegic homolog 3 adaptor ß2-Spectrin (ß2SP, gene Sptbn1) in maintaining genomic stability following alcohol-induced DNA damage. ß2SP supports DNA repair through ß2SP-dependent activation of Fanconi anemia complementation group D2 (Fancd2), a core component of the Fanconi anemia complex. Loss of ß2SP leads to decreased Fancd2 levels and sensitizes ß2SP mutants to DNA damage by ethanol treatment, leading to phenotypes that closely resemble those observed in animals lacking both aldehyde dehydrogenase 2 and Fancd2 and resemble human fetal alcohol syndrome. Sptbn1-deficient cells are hypersensitive to DNA crosslinking agents and have defective DNA double-strand break repair that is rescued by ectopic Fancd2 expression. Moreover, Fancd2 transcription in response to DNA damage/transforming growth factor ß stimulation is regulated by the ß2SP/mothers against decapentaplegic homolog 3 complex. CONCLUSION: Dysfunctional transforming growth factor ß/ß2SP signaling impacts the processing of genotoxic metabolites by altering the Fanconi anemia DNA repair pathway. (Hepatology 2017;65:678-693).


Assuntos
Proteína do Grupo de Complementação D2 da Anemia de Fanconi/genética , Instabilidade Genômica/genética , Prenhez , Espectrina/genética , Fator de Crescimento Transformador beta2/genética , Análise de Variância , Animais , Animais Recém-Nascidos , Dano ao DNA/genética , Reparo do DNA/genética , Etanol/farmacologia , Feminino , Transtornos do Espectro Alcoólico Fetal/genética , Transtornos do Espectro Alcoólico Fetal/patologia , Humanos , Imuno-Histoquímica , Peroxidação de Lipídeos/genética , Camundongos , Camundongos Transgênicos , Gravidez , Reação em Cadeia da Polimerase em Tempo Real/métodos , Transdução de Sinais
15.
J Transl Med ; 14(1): 328, 2016 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-27894309

RESUMO

BACKGROUND: Dysregulation of long noncoding RNA (lncRNA) expression contributes to the pathogenesis of many human diseases, including liver diseases. Several lncRNAs have been reported to play a role in the development of hepatocellular carcinoma (HCC). However, most studies have analyzed lncRNAs only in hepatitis B virus (HBV)-related HCC or in a single group of HCC patients regardless of the viral etiology. METHODS: To investigate whether lncRNAs are differentially expressed in HCC of different viral etiology, we profiled 101 disease-related lncRNAs, including 25 lncRNAs previously associated with HCC, in liver specimens obtained from well-characterized patients with HBV-, hepatitis C virus (HCV)-, or hepatitis D virus (HDV)-associated HCC. RESULTS: We identified eight novel HCC-related lncRNAs that were significantly dysregulated in HCC tissues compared to their surrounding non-tumorous tissues. Some of these lncRNAs were significantly dysregulated predominantly in one specific hepatitis virus-related HCC, including PCAT-29 in HBV-related HCC, aHIF and PAR5 in HCV-related HCC, and Y3 in HDV-related HCC. Among the lncRNAs previously reported in HCC, we found that DBH-AS1, hDREH and hPVT1 were differentially expressed in HCC of different viral etiology. CONCLUSIONS: Our study suggests that HCC of different viral etiology is regulated by different lncRNAs. The identification of lncRNAs unique to specific hepatitis virus-related HCC may provide new tools for improving the diagnosis of HCC and open new avenues for disease-specific therapeutic interventions.


Assuntos
Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/virologia , Regulação Neoplásica da Expressão Gênica , Vírus de Hepatite/fisiologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/virologia , RNA Longo não Codificante/genética , Carcinoma Hepatocelular/patologia , Perfilação da Expressão Gênica , Humanos , Neoplasias Hepáticas/patologia , Análise de Componente Principal , RNA Longo não Codificante/metabolismo
16.
Hepatology ; 64(3): 732-45, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27227815

RESUMO

UNLABELLED: The goal of this study was to determine whether an association exists between circulating microRNA (miRNA) levels and disease progression in chronic hepatitis C (CHC), whether plasma or extracellular vesicles (EVs) were optimal for miRNA measurement and their correlation with hepatic miRNA expression, and the mechanistic plausibility of this association. We studied 130 CHC patients prospectively followed over several decades. A comprehensive miRNA profile in plasma using microarray with 2578 probe sets showed 323 miRNAs differentially expressed between healthy individuals and CHC patients, but only six that distinguished patients with mild versus severe chronic hepatitis. Eventually, let-7a/7c/7d-5p and miR-122-5p were identified as candidate predictors of disease progression. Cross-sectional analyses at the time of initial liver biopsy showed that reduced levels of let-7a/7c/7d-5p (let-7s) in plasma were correlated with advanced histological hepatic fibrosis stage and other fibrotic markers, whereas miR-122-5p levels in plasma were positively correlated with inflammatory activity, but not fibrosis. Measuring let-7s levels in EVs was not superior to intact plasma for discriminating significant hepatic fibrosis. Longitudinal analyses in 60 patients with paired liver biopsies showed that let-7s levels in plasma markedly declined over time in parallel with fibrosis progression. However, circulating let-7s levels did not parallel those in the liver. CONCLUSION: Of all miRNAs screened, the let-7 family showed the best correlation with hepatic fibrosis in CHC. A single determination of let-7s levels in plasma did not have superior predictive value for significant hepatic fibrosis compared with that of fibrosis-4 index, but the rate of let-7s decline in paired longitudinal samples correlated well with fibrosis progression. Pathway analysis suggested that low levels of let-7 may influence hepatic fibrogenesis through activation of transforming growth factor ß signaling in hepatic stellate cells. (Hepatology 2016;64:732-745).


Assuntos
Vesículas Extracelulares/metabolismo , Hepatite C Crônica/sangue , Cirrose Hepática/sangue , MicroRNAs/sangue , Adulto , Estudos de Coortes , Progressão da Doença , Feminino , Perfilação da Expressão Gênica , Hepatite C Crônica/complicações , Humanos , Fígado/patologia , Cirrose Hepática/patologia , Cirrose Hepática/virologia , Masculino , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase em Tempo Real
17.
Proc Natl Acad Sci U S A ; 113(5): 1375-80, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26787866

RESUMO

Analysis of hepatitis C virus (HCV) replication and quasispecies distribution within the tumor of patients with HCV-associated hepatocellular carcinoma (HCC) can provide insight into the role of HCV in hepatocarcinogenesis and, conversely, the effect of HCC on the HCV lifecycle. In a comprehensive study of serum and multiple liver specimens from patients with HCC who underwent liver transplantation, we found a sharp and significant decrease in HCV RNA in the tumor compared with surrounding nontumorous tissues, but found no differences in multiple areas of control non-HCC cirrhotic livers. Diminished HCV replication was not associated with changes in miR-122 expression. HCV genetic diversity was significantly higher in livers containing HCC compared with control non-HCC cirrhotic livers. Tracking of individual variants demonstrated changes in the viral population between tumorous and nontumorous areas, the extent of which correlated with the decline in HCV RNA, suggesting HCV compartmentalization within the tumor. In contrast, compartmentalization was not observed between nontumorous areas and serum, or in controls between different areas of the cirrhotic liver or between liver and serum. Our findings indicate that HCV replication within the tumor is restricted and compartmentalized, suggesting segregation of specific viral variants in malignant hepatocytes.


Assuntos
Carcinoma Hepatocelular/virologia , Hepacivirus/fisiologia , Neoplasias Hepáticas/virologia , Replicação Viral , Hepacivirus/genética , Humanos , RNA Viral/genética
18.
J Pathol ; 238(4): 531-42, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26415102

RESUMO

Obese animals and non-alcoholic fatty liver disease (NAFLD) patients exhibit elevated blood alcohol, suggesting potential contributions of alcohol metabolism to the development of NAFLD. Liver gene expression in patients with biopsy-proven mild (N = 40) and severe (N = 32) NAFLD were compared to that in healthy liver donors (N = 7) and alcoholic hepatitis (AH; N = 15) using microarrays. Principal components analyses (PCA) revealed similar gene expression patterns between mild and severe NAFLD which clustered with those of AH but were distinct from those of healthy livers. Differential gene expression between NAFLD and healthy livers was consistent with established NAFLD-associated genes and NAFLD pathophysiology. Alcohol-metabolizing enzymes including ADH, ALDH, CYP2E1, and CAT were up-regulated in NAFLD livers. The expression level of alcohol-metabolizing genes in severe NAFLD was similar to that in AH. The NAFLD gene expression profiles provide new directions for future investigations to identify disease markers and targets for prevention and treatment, as well as to foster our understanding of NAFLD pathogenesis and pathophysiology. Particularly, increased expression of alcohol-metabolizing genes in NAFLD livers supports a role for endogenous alcohol metabolism in NAFLD pathology and provides further support for gut microbiome therapy in NAFLD management. Copyright © 2015 Pathological Society of Great Britain and Ireland. Published by John Wiley © Sons, Ltd.


Assuntos
Álcoois/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Adulto , Biópsia , Feminino , Perfilação da Expressão Gênica/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Obesidade/genética , Obesidade/metabolismo , Transcriptoma
19.
J Transl Med ; 12: 230, 2014 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-25141867

RESUMO

BACKGROUND: The molecular mechanisms whereby hepatitis B virus (HBV) induces hepatocellular carcinoma (HCC) remain elusive. We used genomic and molecular techniques to investigate host-virus interactions by studying multiple areas of the same liver from patients with HCC. METHODS: We compared the gene signature of whole liver tissue (WLT) versus laser capture-microdissected (LCM) hepatocytes along with the intrahepatic expression of HBV. Gene expression profiling was performed on up to 17 WLT specimens obtained at various distances from the tumor center from individual livers of 11 patients with HCC and on selected LCM samples. HBV markers in liver and serum were determined by real-time polymerase chain reaction (PCR) and confocal immunofluorescence. RESULTS: Analysis of 5 areas of the liver showed a sharp change in gene expression between the immediate perilesional area and tumor periphery that correlated with a significant decrease in the intrahepatic expression of HB surface antigen (HBsAg). The tumor was characterized by a large preponderance of down-regulated genes, mostly involved in the metabolism of lipids and fatty acids, glucose, amino acids and drugs, with down-regulation of pathways involved in the activation of PXR/RXR and PPARα/RXRα nuclear receptors, comprising PGC-1α and FOXO1, two key regulators critically involved not only in the metabolic functions of the liver but also in the life cycle of HBV, acting as essential transcription factors for viral gene expression. These findings were confirmed by gene expression of microdissected hepatocytes. Moreover, LCM of malignant hepatocytes also revealed up-regulation of unique genes associated with cancer and signaling pathways, including two novel HCC-associated cancer testis antigen genes, NUF2 and TTK. CONCLUSIONS: Integrated gene expression profiling of whole liver tissue with that of microdissected hepatocytes demonstrated that HBV-associated HCC is characterized by a metabolism switch-off and by a significant reduction in HBsAg. LCM proved to be a critical tool to validate gene signatures associated with HCC and to identify genes that may play a role in hepatocarcinogenesis, opening new perspectives for the discovery of novel diagnostic markers and therapeutic targets.


Assuntos
Carcinoma Hepatocelular/genética , Genes Virais , Vírus da Hepatite B/genética , Hepatite B/complicações , Hepatócitos/metabolismo , Neoplasias Hepáticas/genética , Fígado/metabolismo , Idoso , Carcinoma Hepatocelular/virologia , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Regulação Viral da Expressão Gênica , Hepatite B/genética , Vírus da Hepatite B/patogenicidade , Hepatócitos/virologia , Interações Hospedeiro-Patógeno/genética , Humanos , Microdissecção e Captura a Laser , Fígado/virologia , Neoplasias Hepáticas/virologia , Masculino , Pessoa de Meia-Idade , Transcriptoma
20.
Int J Cancer ; 133(4): 816-24, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23390000

RESUMO

Although several studies have investigated the association of miRNAs with hepatocellular carcinoma (HCC), the data published so far are not concordant. A reason for these discrepancies may be the fact that most studies used the nontumorous tissue surrounding the HCC lesion as a control, which is almost invariably affected by cirrhosis or chronic hepatitis, as well as other pathological conditions such as hepatitis B virus (HBV) or hepatitis C virus (HCV) infection. Moreover, HCC is often analyzed as a single group regardless of the different viral etiologies. The miRNAs differentially expressed in HCV-related HCC were investigated by comparing the tumorous tissues to a wide range of liver specimens, including healthy livers obtained from liver donors and patients who underwent liver resection for angioma, in addition to tissues from various acute and chronic liver diseases, including HCV-related cirrhosis not associated with HCC, HCV-related cirrhosis associated with HCC and HBV-associated acute liver failure. The whole set of 2,226 human miRNAs were examined, including 1,121 pre-miRNAs and 1,105 mature miRNAs, available in a microarray platform. Stringent statistical methods were applied to reduce the risk of false discoveries to less than 1%. These data identified 18 miRNAs exclusively expressed in HCV-associated HCC, characterized by high specificity and selectivity versus all other liver diseases and healthy conditions and connected into a regulatory network pivoting on p53, phosphatase and tensin homolog and all-trans retinoic acid signaling.


Assuntos
Carcinoma Hepatocelular/genética , Hepacivirus/patogenicidade , Neoplasias Hepáticas/genética , MicroRNAs/genética , Idoso , Carcinoma Hepatocelular/virologia , Feminino , Humanos , Neoplasias Hepáticas/virologia , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA