Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Cereb Blood Flow Metab ; 42(4): 584-599, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34427145

RESUMO

Spreading depolarizations (SDs) indicate injury progression and predict worse clinical outcome in acute brain injury. We demonstrate in rodents that acute brain swelling upon cerebral ischemia impairs astroglial glutamate clearance and increases the tissue area invaded by SD. The cytotoxic extracellular glutamate accumulation (>15 µM) predisposes an extensive bulk of tissue (4-5 mm2) for a yet undescribed simultaneous depolarization (SiD). We confirm in rat brain slices exposed to osmotic stress that SiD is the pathological expansion of prior punctual SD foci (0.5-1 mm2), is associated with astrocyte swelling, and triggers oncotic neuron death. The blockade of astrocytic aquaporin-4 channels and Na+/K+/Cl- co-transporters, or volume-regulated anion channels mitigated slice edema, extracellular glutamate accumulation (<10 µM) and SiD occurrence. Reversal of slice swelling by hyperosmotic mannitol counteracted glutamate accumulation and prevented SiD. In contrast, inhibition of glial metabolism or inhibition of astrocyte glutamate transporters reproduced the SiD phenotype. Finally, we show in the rodent water intoxication model of cytotoxic edema that astrocyte swelling and altered astrocyte calcium waves are central in the evolution of SiD. We discuss our results in the light of evidence for SiD in the human cortex. Our results emphasize the need of preventive osmotherapy in acute brain injury.


Assuntos
Edema Encefálico , Lesões Encefálicas , Animais , Ratos , Astrócitos/metabolismo , Edema Encefálico/patologia , Lesões Encefálicas/metabolismo , Edema/metabolismo , Ácido Glutâmico/metabolismo , Simportadores de Cloreto de Sódio-Potássio/metabolismo
2.
Mol Oncol ; 14(9): 2040-2057, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32534480

RESUMO

Brain metastases are life-threatening complications of triple-negative breast cancer, melanoma, and a few other tumor types. Poor outcome of cerebral secondary tumors largely depends on the microenvironment formed by cells of the neurovascular unit, among which pericytes are the least characterized. By using in vivo and in vitro techniques and human samples, here we show that pericytes play crucial role in the development of metastatic brain tumors by directly influencing key steps of the development of the disease. Brain pericytes had a prompt chemoattractant effect on breast cancer cells and established direct contacts with them. By secreting high amounts of extracellular matrix proteins, pericytes enhanced adhesion of both melanoma and triple-negative cancer cells, which might be particularly important in the exclusive perivascular growth of these tumor cells. In addition, pericytes secreted insulin-like growth factor 2 (IGF2), which had a very significant pro-proliferative effect on mammary carcinoma, but not on melanoma cells. By inhibiting IGF2 signaling using silencing or picropodophyllin (PPP), we could block the proliferation-increasing effect of pericytes on breast cancer cells. Administration of PPP (a blood-brain barrier-permeable substance) significantly decreased the size of brain tumors in mice inoculated with triple-negative breast cancer cells. Taken together, our results indicate that brain pericytes have significant pro-metastatic features, especially in breast cancer. Our study underlines the importance of targeting pericytes and the IGF axis as potential strategies in brain metastatic diseases.


Assuntos
Neoplasias Encefálicas/secundário , Neoplasias da Mama/patologia , Fator de Crescimento Insulin-Like II/metabolismo , Pericitos/metabolismo , Animais , Encéfalo/patologia , Adesão Celular , Comunicação Celular , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Fator de Crescimento Insulin-Like II/genética , Camundongos , Pericitos/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
3.
Acta Neuropathol Commun ; 7(1): 133, 2019 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-31426859

RESUMO

Therapeutic resistance of cerebral secondary tumours largely depends on unique aspects linked to the neurovascular unit, especially cerebral endothelial cells and astrocytes. By using advanced microscopy techniques, here we explored novel mechanisms related to the neurovascular unit during extravasation and proliferation of triple negative breast cancer cells in the brain. Metastatic mammary carcinoma cells arrested and elongated within one hour in cerebral microvessels, but their number decreased by almost 80% in the first two days. Interestingly, malignant cells induced vasoconstriction and development of intraluminal endothelial plugs, which isolated invading cells from the circulation. During diapedesis - which usually took place on day four and five after inoculation of the tumour cells - continuity of cerebral endothelial tight junctions remained intact, indicating migration of cancer cells through the transcellular pathway. In addition, metastatic cells induced formation of multiluminal vessels and claudin-5-positive endothelial blebs. However, even severe endothelial blebbing could be reversed and the vessel morphology was restored shortly after the tumour cells completed transendothelial migration. Similar to neuro-inflammatory leukocytes, tumour cells migrated not only through the endothelial layer, but through the glia limitans perivascularis as well. Nevertheless, along with the growth of metastatic lesions by co-option of pre-existing capillaries, astrocytes and astrocyte end-feet were gradually expelled from the vessels to the border of the tumour. Taken together, we identified previously unknown mechanisms involved in the reaction of brain resident cells to invading breast cancer cells. Our results contribute to a better understanding of the complex cross-talk between tumour cells and host cells in the brain, which is essential for the identification of new therapeutic targets in this devastating disease.


Assuntos
Encéfalo/irrigação sanguínea , Encéfalo/patologia , Neoplasias da Mama/patologia , Movimento Celular/fisiologia , Células Endoteliais/patologia , Animais , Encéfalo/diagnóstico por imagem , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Neoplasias da Mama/diagnóstico por imagem , Células Cultivadas , Córtex Cerebral/irrigação sanguínea , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/patologia , Técnicas de Cocultura , Feminino , Camundongos , Camundongos Endogâmicos BALB C
4.
Nat Cell Biol ; 19(11): 1326-1335, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29058719

RESUMO

In vitro differentiation of human intestinal organoids (HIOs) from pluripotent stem cells is an unparalleled system for creating complex, multicellular three-dimensional structures capable of giving rise to tissue analogous to native human tissue. Current methods for generating HIOs rely on growth in an undefined tumour-derived extracellular matrix (ECM), which severely limits the use of organoid technologies for regenerative and translational medicine. Here, we developed a fully defined, synthetic hydrogel based on a four-armed, maleimide-terminated poly(ethylene glycol) macromer that supports robust and highly reproducible in vitro growth and expansion of HIOs, such that three-dimensional structures are never embedded in tumour-derived ECM. We also demonstrate that the hydrogel serves as an injection vehicle that can be delivered into injured intestinal mucosa resulting in HIO engraftment and improved colonic wound repair. Together, these studies show proof-of-concept that HIOs may be used therapeutically to treat intestinal injury.


Assuntos
Colo/efeitos dos fármacos , Hidrogéis/farmacologia , Intestinos/efeitos dos fármacos , Organoides/efeitos dos fármacos , Regeneração/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Animais , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Matriz Extracelular/efeitos dos fármacos , Humanos , Mucosa Intestinal/efeitos dos fármacos , Camundongos , Células-Tronco Pluripotentes/efeitos dos fármacos
5.
Cell Adh Migr ; 10(3): 269-81, 2016 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-26645485

RESUMO

Brain metastases are common and devastating complications of both breast cancer and melanoma. Although mammary carcinoma brain metastases are more frequent than those originating from melanoma, this latter has the highest tropism to the brain. Using static and dynamic in vitro approaches, here we show that melanoma cells have increased adhesion to the brain endothelium in comparison to breast cancer cells. Moreover, melanoma cells can transmigrate more rapidly and in a higher number through brain endothelial monolayers than breast cancer cells. In addition, melanoma cells have increased ability to impair tight junctions of cerebral endothelial cells. We also show that inhibition of Rac or PI3K impedes adhesion of breast cancer cells and melanoma cells to the brain endothelium. In addition, inhibition of Rac or PI3K inhibits the late phase of transmigration of breast cancer cells and the early phase of transmigration of melanoma cells. On the other hand, the Rac inhibitor EHT1864 impairs the junctional integrity of the brain endothelium, while the PI3K inhibitor LY294002 has no damaging effect on interendothelial junctions. We suggest that targeting the PI3K/Akt pathway may represent a novel opportunity in preventing the formation of brain metastases of melanoma and breast cancer.


Assuntos
Encéfalo/patologia , Neoplasias da Mama/patologia , Endotélio Vascular/patologia , Melanoma/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Migração Transendotelial e Transepitelial , Proteínas rac1 de Ligação ao GTP/metabolismo , Animais , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Endoteliais , Feminino , Humanos , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/farmacologia , Pironas/farmacologia , Quinolinas/farmacologia , Ratos , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo
6.
J Vis Exp ; (101): e53112, 2015 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-26274554

RESUMO

The colonic mucosal tissue provides a vital barrier to luminal antigens. This barrier is composed of a monolayer of simple columnar epithelial cells. The colonic epithelium is dynamically turned over and epithelial cells are generated in the stem cell containing crypts of Lieberkühn. Progenitor cells produced in the crypt-bases migrate toward the luminal surface, undergoing a process of cellular differentiation before being shed into the gut lumen. In order to study these processes at the molecular level, we have developed a simple method for the microdissection of two spatially distinct regions of the colonic mucosa; the proliferative crypt zone, and the differentiated surface epithelial cells. Our objective is to isolate specific crypt and surface epithelial cell populations from mouse colonic mucosa for the isolation of RNA and protein.


Assuntos
Colo/citologia , Crioultramicrotomia/métodos , Mucosa Intestinal/citologia , Microdissecção/métodos , Animais , Diferenciação Celular/fisiologia , Células Epiteliais/citologia , Imunofluorescência/métodos , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal/métodos , Células-Tronco/citologia
7.
Am J Pathol ; 185(8): 2206-18, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26216285

RESUMO

The intestinal epithelium is a dynamic barrier that maintains the distinct environments of intestinal tissue and lumen. Epithelial barrier function is defined principally by tight junctions, which, in turn, depend on the regulated expression of claudin family proteins. Claudins are expressed differentially during intestinal epithelial cell (IEC) differentiation. However, regulatory mechanisms governing claudin expression during epithelial differentiation are incompletely understood. We investigated the molecular mechanisms regulating claudin-7 during IEC differentiation. Claudin-7 expression is increased as epithelial cells differentiate along the intestinal crypt-luminal axis. By using model IECs we observed increased claudin-7 mRNA and nascent heteronuclear RNA levels during differentiation. A screen for potential regulators of the CLDN7 gene during IEC differentiation was performed using a transcription factor/DNA binding array, CLDN7 luciferase reporters, and in silico promoter analysis. We identified hepatocyte nuclear factor 4α as a regulatory factor that bound endogenous CLDN7 promoter in differentiating IECs and stimulated CLDN7 promoter activity. These findings support a role of hepatocyte nuclear factor 4α in controlling claudin-7 expression during IEC differentiation.


Assuntos
Diferenciação Celular/genética , Claudinas/metabolismo , Células Epiteliais/metabolismo , Fator 4 Nuclear de Hepatócito/metabolismo , Mucosa Intestinal/metabolismo , Células CACO-2 , Claudinas/genética , Células Epiteliais/citologia , Regulação da Expressão Gênica , Células HT29 , Fator 4 Nuclear de Hepatócito/genética , Humanos , Mucosa Intestinal/citologia , Regiões Promotoras Genéticas
8.
Mol Biol Cell ; 25(18): 2710-9, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25031428

RESUMO

Tight junctions (TJs) are dynamic, multiprotein intercellular adhesive contacts that provide a vital barrier function in epithelial tissues. TJs are remodeled during physiological development and pathological mucosal inflammation, and differential expression of the claudin family of TJ proteins determines epithelial barrier properties. However, the molecular mechanisms involved in TJ remodeling are incompletely understood. Using acGFP-claudin 4 as a biosensor of TJ remodeling, we observed increased claudin 4 fluorescence recovery after photobleaching (FRAP) dynamics in response to inflammatory cytokines. Interferon γ and tumor necrosis factor α increased the proportion of mobile claudin 4 in the TJ. Up-regulation of claudin 4 protein rescued these mobility defects and cytokine-induced barrier compromise. Furthermore, claudins 2 and 4 have reciprocal effects on epithelial barrier function, exhibit differential FRAP dynamics, and compete for residency within the TJ. These findings establish a model of TJs as self-assembling systems that undergo remodeling in response to proinflammatory cytokines through a mechanism of heterotypic claudin-binding incompatibility.


Assuntos
Claudina-4/metabolismo , Claudinas/metabolismo , Interferon gama/fisiologia , Junções Íntimas/metabolismo , Fator de Necrose Tumoral alfa/fisiologia , Animais , Células CHO , Células CACO-2 , Cricetinae , Cricetulus , Células HeLa , Humanos , Camundongos , Multimerização Proteica
9.
Pigment Cell Melanoma Res ; 27(1): 113-23, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24148763

RESUMO

We have investigated the role of the Rho/ROCK signaling pathway in the interaction of metastatic melanoma cells with the brain endothelium. ROCK inhibition induced a shift of melanoma cells to the mesenchymal phenotype, increased the number of melanoma cells attached to the brain endothelium, and strengthened the adhesion force between melanoma and endothelial cells. Inhibition of ROCK raised the number of melanoma cells migrating through the brain endothelial monolayer and promoted the formation of parenchymal brain metastases in vivo. We have shown that inhibition of the Rho/ROCK pathway in melanoma, but not in brain endothelial cells, is responsible for this phenomenon. Our results indicate that the mesenchymal type of tumor cell movement is primordial in the transmigration of melanoma cells through the blood-brain barrier.


Assuntos
Barreira Hematoencefálica/enzimologia , Comunicação Celular , Movimento Celular , Células Endoteliais/enzimologia , Melanoma/enzimologia , Proteínas de Neoplasias/metabolismo , Transdução de Sinais , Quinases Associadas a rho/metabolismo , Animais , Barreira Hematoencefálica/patologia , Linhagem Celular Tumoral , Células Endoteliais/patologia , Melanoma/genética , Melanoma/patologia , Camundongos , Proteínas de Neoplasias/genética , Quinases Associadas a rho/genética
10.
Ann N Y Acad Sci ; 1258: 115-24, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22731724

RESUMO

The epithelial tight junction (TJ) is the apical-most intercellular junction and serves as a gatekeeper for the paracellular pathway by permitting regulated passage of fluid and ions while restricting movement of large molecules. In addition to these vital barrier functions, TJ proteins are emerging as major signaling molecules that mediate crosstalk between the extracellular environment, the cell surface, and the nucleus. Biochemical studies have recently determined that epithelial TJs contain over a hundred proteins that encompass transmembrane proteins, scaffolding molecules, cytoskeletal components, regulatory elements, and signaling molecules. Indeed, many of these proteins have defined roles in regulating epithelial polarity, differentiation, and proliferation. This review will focus on recent findings that highlight a role for TJ proteins in controlling cell proliferation during epithelial homeostasis, wound healing, and carcinogenesis.


Assuntos
Proliferação de Células , Células Epiteliais/citologia , Junções Íntimas/fisiologia , Animais , Humanos
11.
PLoS One ; 6(6): e20758, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21674054

RESUMO

Malignant melanoma represents the third common cause of brain metastasis, having the highest propensity to metastasize to the brain of all primary neoplasms in adults. Since the central nervous system lacks a lymphatic system, the only possibility for melanoma cells to reach the brain is via the blood stream and the blood-brain barrier. Despite the great clinical importance, mechanisms of transmigration of melanoma cells through the blood-brain barrier are incompletely understood. In order to investigate this question we have used an in vitro experimental setup based on the culture of cerebral endothelial cells (CECs) and the A2058 and B16/F10 melanoma cell lines, respectively. Melanoma cells were able to adhere to confluent brain endothelial cells, a process followed by elimination of protrusions and transmigration from the luminal to the basolateral side of the endothelial monolayers. The transmigration process of certain cells was accelerated when they were able to use the routes preformed by previously transmigrated melanoma cells. After migrating through the endothelial monolayer several melanoma cells continued their movement beneath the endothelial cell layer. Melanoma cells coming in contact with brain endothelial cells disrupted the tight and adherens junctions of CECs and used (at least partially) the paracellular transmigration pathway. During this process melanoma cells produced and released large amounts of proteolytic enzymes, mainly gelatinolytic serine proteases, including seprase. The serine protease inhibitor Pefabloc® was able to decrease to 44-55% the number of melanoma cells migrating through CECs. Our results suggest that release of serine proteases by melanoma cells and disintegration of the interendothelial junctional complex are main steps in the formation of brain metastases in malignant melanoma.


Assuntos
Barreira Hematoencefálica/patologia , Células Endoteliais/patologia , Melanoma/enzimologia , Melanoma/patologia , Serina Proteases/metabolismo , Junções Íntimas/metabolismo , Migração Transendotelial e Transepitelial , Animais , Linhagem Celular Tumoral , Humanos , Melanoma/metabolismo , Camundongos , Ratos , Junções Íntimas/patologia
12.
EMBO Rep ; 12(4): 314-20, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21372850

RESUMO

Expression of the tight junction protein junctional adhesion molecule-A (JAM-A) has been linked to proliferation and tumour progression. However, a direct role for JAM-A in regulating proliferative processes has not been shown. By using complementary in vivo and in vitro approaches, we demonstrate that JAM-A restricts intestinal epithelial cell (IEC) proliferation in a dimerization-dependent manner, by inhibiting Akt-dependent ß-catenin activation. Furthermore, IECs from transgenic JAM-A(-/-)/ß-catenin/T-cell factor reporter mice showed enhanced ß-catenin-dependent transcription. Finally, inhibition of Akt reversed colonic crypt hyperproliferation in JAM-A-deficient mice. These data establish a new link between JAM-A and IEC homeostasis.


Assuntos
Moléculas de Adesão Celular/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Superfície Celular/metabolismo , Transdução de Sinais/fisiologia , beta Catenina/metabolismo , Animais , Moléculas de Adesão Celular/genética , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Humanos , Immunoblotting , Camundongos , Camundongos Mutantes , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Receptores de Superfície Celular/genética , Ribonucleosídeos/farmacologia , Transdução de Sinais/genética , Junções Íntimas/genética , Junções Íntimas/metabolismo , beta Catenina/genética
13.
J Neurochem ; 107(1): 116-26, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18673450

RESUMO

Because of the relative impermeability of the blood-brain barrier (BBB), many drugs are unable to reach the CNS in therapeutically relevant concentration. One method to deliver drugs to the CNS is the osmotic opening of the BBB using mannitol. Hyperosmotic mannitol induces a strong phosphorylation on tyrosine residues in a broad spectrum of proteins in cerebral endothelial cells, the principal components of the BBB. Previously, we have shown that among targets of tyrosine phosphorylation are beta-catenin, extracellular signal-regulated kinase 1/2 and the non-receptor tyrosine kinase Src. The aim of this study was to identify new signalling pathways activated by hypertonicity in cerebral endothelial cells. Using an antibody array and immunoprecipitation we identified the receptor tyrosine kinase Axl to become tyrosine phosphorylated in response to hyperosmotic mannitol. Besides activation, Axl was also cleaved in response to osmotic stress. Degradation of Axl proved to be metalloproteinase- and proteasome-dependent and resulted in 50-55 kDa C-terminal products which remained phosphorylated even after degradation. Specific knockdown of Axl increased the rate of apoptosis in hyperosmotic mannitol-treated cells; therefore, we assume that activation of Axl may be a protective mechanism against hypertonicity-induced apoptosis. Our results identify Axl as an important element of osmotic stress-induced signalling.


Assuntos
Barreira Hematoencefálica/enzimologia , Artérias Cerebrais/enzimologia , Células Endoteliais/enzimologia , Proteínas Oncogênicas/metabolismo , Pressão Osmótica/efeitos dos fármacos , Receptores Proteína Tirosina Quinases/metabolismo , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Barreira Hematoencefálica/efeitos dos fármacos , Linhagem Celular , Artérias Cerebrais/citologia , Artérias Cerebrais/efeitos dos fármacos , Regulação para Baixo/fisiologia , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Humanos , Soluções Hipertônicas/farmacologia , Manitol/farmacologia , Metaloproteases/metabolismo , Proteínas Oncogênicas/genética , Fosforilação/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Proto-Oncogênicas , Proteínas Proto-Oncogênicas c-akt/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , Receptores Proteína Tirosina Quinases/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Receptor Tirosina Quinase Axl
14.
Cell Biol Int ; 32(2): 198-209, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17920942

RESUMO

The present study was designed to investigate the effect of nicotine and polyaromatic hydrocarbon compounds on cerebral endothelial cells (CECs). Nicotine treatments from 15 min to 5h did not cause any changes in the expression and localization of principal junctional proteins. One day of treatment with a relatively high concentration of nicotine induced a decrease in the expression of the tight junction protein ZO-1, occludin, and the adherens junction protein, cadherin. Treatment with 3 x 10(-5)M phenanthrene for 24h caused a redistribution of occludin from the Triton X-100 insoluble to the Triton X-100 soluble fraction. Transendothelial electrical resistance was not significantly affected by 24h treatments with nicotine, methylanthracene or phenanthrene. However, 24h nicotine treatment increased transendothelial permeability in CECs exposed to oxidative stress. Both nicotine and phenanthrene were able to regulate the expression of a large number of proteins as revealed by 2D electrophoresis. Our experiments suggest that tobacco smoking may affect the junctional complex of CECs, and that this effect is enhanced by oxidative stress.


Assuntos
Córtex Cerebral/citologia , Células Endoteliais/efeitos dos fármacos , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Hidrocarbonetos Policíclicos Aromáticos/farmacologia , Animais , Barreira Hematoencefálica/fisiologia , Caderinas/metabolismo , Claudina-5 , Técnicas de Cocultura , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Naftoquinonas/farmacologia , Neuroglia/citologia , Ocludina , Estresse Oxidativo , Fenantrenos/farmacologia , Fosfoproteínas/metabolismo , Proteoma/análise , Ratos , Ratos Wistar , Proteína da Zônula de Oclusão-1 , Proteína da Zônula de Oclusão-2 , beta Catenina/metabolismo
15.
Neurochem Int ; 50(1): 219-28, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16997427

RESUMO

Peripheral inflammation can aggravate local brain inflammation and neuronal death. The blood-brain barrier (BBB) is a key player in the event. On a relevant in vitro model of primary rat brain endothelial cells co-cultured with primary rat astroglia cells lipopolysaccharide (LPS)-induced changes in several BBB functions have been investigated. LPS-treatment resulted in a dose- and time-dependent decrease in the integrity of endothelial monolayers: transendothelial electrical resistance dropped, while flux of permeability markers fluorescein and albumin significantly increased. Immunostaining for junctional proteins ZO-1, claudin-5 and beta-catenin was significantly weaker in LPS-treated endothelial cells than in control monolayers. LPS also reduced the intensity and changed the pattern of ZO-1 immunostaining in freshly isolated rat brain microvessels. The activity of P-glycoprotein, an important efflux pump at the BBB, was also inhibited by LPS. At the same time production of reactive oxygen species and nitric oxide was increased in brain endothelial cells treated with LPS. Pentosan polysulfate, a polyanionic polysaccharide could reduce the deleterious effects of LPS on BBB permeability, and P-glycoprotein activity. LPS-stimulated increase in the production of reactive oxygen species and nitric oxide was also decreased by pentosan treatment. The protective effect of pentosan for brain endothelium can be of therapeutical significance in bacterial infections affecting the BBB.


Assuntos
Encéfalo/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Poliéster Sulfúrico de Pentosana/farmacologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Barreira Hematoencefálica , Encéfalo/irrigação sanguínea , Endotélio Vascular/citologia , Potenciais da Membrana/efeitos dos fármacos , Poliéster Sulfúrico de Pentosana/farmacocinética , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA