Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Water Res ; 256: 121612, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38642537

RESUMO

Genomic surveillance of SARS-CoV-2 has given insight into the evolution and epidemiology of the virus and its variant lineages during the COVID-19 pandemic. Expanding this approach to include a range of respiratory pathogens can better inform public health preparedness for potential outbreaks and epidemics. Here, we simultaneously sequenced 38 pathogens including influenza viruses, coronaviruses and bocaviruses, to examine the abundance and seasonality of respiratory pathogens in urban wastewater. We deployed a targeted bait capture method and short-read sequencing (Illumina Respiratory Virus Oligos Panel; RVOP) on composite wastewater samples from 8 wastewater treatment plants (WWTPs) and one associated hospital site. By combining seasonal sampling with whole genome sequencing, we were able to concurrently detect and characterise a range of common respiratory pathogens, including SARS-CoV-2, adenovirus and parainfluenza virus. We demonstrated that 38 respiratory pathogens can be detected at low abundances year-round, that hospital pathogen diversity is higher in winter vs. summer sampling events, and that significantly more viruses are detected in raw influent compared to treated effluent samples. Finally, we compared detection sensitivity of RT-qPCR vs. next generation sequencing for SARS-CoV-2, enteroviruses, influenza A/B, and respiratory syncytial viruses. We conclude that both should be used in combination; RT-qPCR allowed accurate quantification, whilst genomic sequencing detected pathogens at lower abundance. We demonstrate the valuable role of wastewater genomic surveillance and its contribution to the field of wastewater-based epidemiology, gaining rapid understanding of the seasonal presence and persistence for common respiratory pathogens. By simultaneously monitoring seasonal trends and early warning signs of many viruses circulating in communities, public health agencies can implement targeted prevention and rapid response plans.


Assuntos
Águas Residuárias , Águas Residuárias/virologia , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Humanos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , COVID-19/virologia , COVID-19/epidemiologia , Estações do Ano
2.
Mar Pollut Bull ; 200: 116081, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38354589

RESUMO

Human wastewater-derived pollution of the environment is an emerging health risk that increases the number of waterborne and foodborne illnesses globally. To better understand and mitigate such health risks, we investigated the prevalence of faecal indicator bacteria, Escherichia coli, and indicator virus (crAssphage) along with human and animal enteric viruses (adenoviruses, noroviruses, sapoviruses, hepatitis E virus) in shellfish and water samples collected from two shellfish harvesting areas in the UK. Human noroviruses were detected at higher detection rates in oyster and water samples compared to mussels with peaks during the autumn-winter seasons. Human enteric viruses were sporadically detected during the warmer months, suggesting potential introduction by tourists following the relaxation of COVID-19 lockdown measures. Our results suggest that viral indicators are more suitable for risk assessment and source tracking than E. coli. The detection of emerging hepatitis and sapoviruses, support the need for comprehensive viral monitoring in shellfish harvesting areas.


Assuntos
Enterovirus , Águas Residuárias , Animais , Humanos , Escherichia coli , Estuários , Água , Microbiologia da Água , Fezes/microbiologia , Poluição da Água
3.
Virusdisease ; 34(2): 297-306, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37408547

RESUMO

A better understanding of the aetiology of acute gastroenteritis (AGE) outbreaks in Southeast Nigeria would help safeguarding public health. This study screened stool samples collected from infants (children < 5 years of age) attending selected hospitals in Nsukka for human enteric viruses and evaluated the seasonality of AGE based on three-year records available at selected hospitals. A total of 120 stool samples (109 from diarrhoeal-patients and 11 from non-diarrhoeal patients, as control) collected during the AGE outbreaks of January - March 2019 and January-February 2020. The samples were analysed using an immunochromatographic lateral flow assay for differential qualitative detection of rotavirus (RoV), adenovirus (AdV), and norovirus genogroups I and II (NoVI, NoVII). Three-year (2017-2019) retrospective data on the cases of AGE reported at the hospitals were also collected and analysed. The overall prevalence of acute gastroenteritis was high (75.83%), with 13.19%representing viral co-infections. Rotavirus detection rate (69.17%) was higher than that for other viral agents (15.83%). Both mono- and mixed infections were observed for RoV, AdV and NoVII, whereas NoVI was detected only in co-infection cases. Analysis of risk factors showed that acute gastroenteritis was detected more often in infants of age ˂1 year (73.53%) than in those 1 ≤ 2 years (22.55%) or > 2 years (3.92%) in age. Gender and age were not associated with the cases of co-infections (p˂0.05). The seasonality data indicated one peak of the infection occurring in January 2017 which has decreased consecutively in the subsequent two years. These results demonstrate the prevalence and co-occurrence of enteric viruses in cases of infantile diarrhoea in Nsukka. Further molecular characterization of enteric virus strains, especially noroviruses, in this region would contribute significantly to global epidemiological data. Supplementary Information: The online version contains supplementary material available at 10.1007/s13337-023-00821-2.

4.
Viruses ; 16(1)2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38257740

RESUMO

Quantifying viruses in wastewater via RT-qPCR provides total genomic data but does not indicate the virus capsid integrity or the potential risk for human infection. Assessing virus capsid integrity in sewage is important for wastewater-based surveillance, since discharged effluent may pose a public health hazard. While integrity assays using cell cultures can provide this information, they require specialised laboratories and expertise. One solution to overcome this limitation is the use of photo-reactive monoazide dyes (e.g., propidium monoazide [PMAxx]) in a capsid integrity-RT-qPCR assay (ci-RT-qPCR). In this study, we tested the efficiency of PMAxx dye at 50 µM and 100 µM concentrations on live and heat-inactivated model viruses commonly detected in wastewater, including adenovirus (AdV), hepatitis A (HAV), influenza A virus (IAV), and norovirus GI (NoV GI). The 100 µM PMAxx dye concentration effectively differentiated live from heat-inactivated viruses for all targets in buffer solution. This method was then applied to wastewater samples (n = 19) for the detection of encapsulated AdV, enterovirus (EV), HAV, IAV, influenza B virus (IBV), NoV GI, NoV GII, and SARS-CoV-2. Samples were negative for AdV, HAV, IAV, and IBV but positive for EV, NoV GI, NoV GII, and SARS-CoV-2. In the PMAxx-treated samples, EV, NoV GI, and NoV GII showed -0.52-1.15, 0.9-1.51, and 0.31-1.69 log reductions in capsid integrity, indicating a high degree of potentially infectious virus in wastewater. In contrast, SARS-CoV-2 was only detected using RT-qPCR but not after PMAxx treatment, indicating the absence of encapsulated and potentially infectious virus. In conclusion, this study demonstrates the utility of PMAxx dyes to evaluate capsid integrity across a diverse range of viruses commonly monitored in wastewater.


Assuntos
Infecções por Enterovirus , Hepatite A , Norovirus , Humanos , Capsídeo , Águas Residuárias , Proteínas do Capsídeo , Vírion , Adenoviridae/genética , Antígenos Virais , Corantes
5.
Microbiol Spectr ; 10(4): e0110222, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35950856

RESUMO

Wastewater-based epidemiology (WBE) has been widely used to track levels of SARS-CoV-2 infection in the community during the COVID-19 pandemic. Due to the rapid expansion of WBE, many methods have been used and developed for virus concentration and detection in wastewater. However, very little information is available on the relative performance of these approaches. In this study, we compared the performance of five commonly used wastewater concentration methods for the detection and quantification of pathogenic viruses (SARS-CoV-2, norovirus, rotavirus, influenza, and measles viruses), fecal indicator viruses (crAssphage, adenovirus, pepper mild mottle virus), and process control viruses (murine norovirus and bacteriophage Phi6) in laboratory spiking experiments. The methods evaluated included those based on either ultrafiltration (Amicon centrifugation units and InnovaPrep device) or precipitation (using polyethylene glycol [PEG], beef extract-enhanced PEG, and ammonium sulfate). The two best methods were further tested on 115 unspiked wastewater samples. We found that the volume and composition of the wastewater and the characteristics of the target viruses greatly affected virus recovery, regardless of the method used for concentration. All tested methods are suitable for routine virus concentration; however, the Amicon ultrafiltration method and the beef extract-enhanced PEG precipitation methods yielded the best recoveries. We recommend the use of ultrafiltration-based concentration for low sample volumes with high virus titers and ammonium levels and the use of precipitation-based concentration for rare pathogen detection in high-volume samples. IMPORTANCE As wastewater-based epidemiology is utilized for the surveillance of COVID-19 at the community level in many countries, it is crucial to develop and validate reliable methods for virus detection in sewage. The most important step in viral detection is the efficient concentration of the virus particles and/or their genome for subsequent analysis. In this study, we compared five different methods for the detection and quantification of different viruses in wastewater. We found that dead-end ultrafiltration and beef extract-enhanced polyethylene glycol precipitation were the most reliable approaches. We also discovered that sample volume and physico-chemical properties have a great effect on virus recovery. Hence, wastewater process methods and start volumes should be carefully selected in ongoing and future wastewater-based national surveillance programs for COVID-19 and beyond.


Assuntos
COVID-19 , Vírus , Animais , Bovinos , Humanos , Camundongos , Pandemias , Polietilenoglicóis , SARS-CoV-2 , Vírus/genética , Águas Residuárias
6.
Sci Total Environ ; 838(Pt 4): 156580, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35690190

RESUMO

Wastewater-based epidemiology (WBE) has proven to be a useful surveillance tool during the ongoing SARS-CoV-2 pandemic, and has driven research into evaluating the most reliable and cost-effective techniques for obtaining a representative sample of wastewater. When liquid samples cannot be taken efficiently, passive sampling approaches have been used, however, insufficient data exists on their usefulness for multi-virus capture and recovery. In this study, we compared the virus-binding capacity of two passive samplers (cotton-based tampons and ion exchange filter papers) in two different water types (deionised water and wastewater). Here we focused on the capture of wastewater-associated viruses including Influenza A and B (Flu-A & B), SARS-CoV-2, human adenovirus (AdV), norovirus GII (NoVGII), measles virus (MeV), pepper mild mottle virus (PMMoV), the faecal marker crAssphage and the process control virus Pseudomonas virus phi6. After deployment, we evaluated four different methods to recover viruses from the passive samplers namely, (i) phosphate buffered saline (PBS) elution followed by polyethylene glycol (PEG) precipitation, (ii) beef extract (BE) elution followed by PEG precipitation, (iii) no-elution into PEG precipitation, and (iv) direct extraction. We found that the tampon-based passive samplers had higher viral recoveries in comparison to the filter paper. Overall, the preferred viral recovery method from the tampon passive samplers was the no-elution/PEG precipitation method. Furthermore, we evidenced that non-enveloped viruses had higher percent recoveries from the passive samplers than enveloped viruses. This is the first study of its kind to assess passive sampler and viral recovery methods amongst a plethora of viruses commonly found in wastewater or used as a viral surrogate in wastewater studies.


Assuntos
COVID-19 , Vírus , Animais , Bovinos , Humanos , SARS-CoV-2 , Águas Residuárias , Água
7.
Virology ; 565: 65-72, 2022 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-34739918

RESUMO

Fish papillomaviruses form a newly discovered group broadly recognized as the Secondpapillomavirinae subfamily. This study expands the documented genomes of the fish papillomaviruses from six to 16, including one from the Antarctic emerald notothen, seven from commercial market fishes, one from data mining of sea bream sequence data, and one from a western gull cloacal swab that is likely diet derived. The genomes of secondpapillomaviruses are ∼6 kilobasepairs (kb), which is substantially smaller than the ∼8 kb of terrestrial vertebrate papillomaviruses. Each genome encodes a clear homolog of the four canonical papillomavirus genes, E1, E2, L1, and L2. In addition, we identified open reading frames (ORFs) with short linear peptide motifs reminiscent of E6/E7 oncoproteins. Fish papillomaviruses are extremely diverse and phylogenetically distant from other papillomaviruses suggesting a model in which terrestrial vertebrate-infecting papillomaviruses arose after an evolutionary bottleneck event, possibly during the water-to-land transition.


Assuntos
Peixes/virologia , Papillomaviridae/classificação , Animais , Regiões Antárticas , Evolução Biológica , Charadriiformes/virologia , DNA Viral , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala , Fases de Leitura Aberta , Papillomaviridae/genética , Proteínas E7 de Papillomavirus/genética , Infecções por Papillomavirus/virologia , Filogenia , Análise de Sequência de DNA
8.
Water Res ; 196: 117051, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33774351

RESUMO

Potable groundwater contamination by human enteric viruses poses serious health risks. Our understanding of virus subsurface transport has largely depended on studying bacteriophages as surrogates. Few studies have compared the transport behaviour of enteric viruses, especially norovirus, with phage surrogates. We conducted laboratory column experiments to investigate norovirus and bacteriophage MS2 (MS2) filtration in alluvial sand, and rotavirus, adenovirus and MS2 filtration in alluvial gravel aquifer media in 2 mM NaCl (pH 6.6-6.9) with pore velocities of 4.6-5.4 m/day. The data were analysed using colloid filtration theory and HYDRUS-1D 2-site attachment-detachment modelling. Norovirus removal was somewhat lower than MS2 removal in alluvial sand. The removal of rotavirus and adenovirus was markedly greater than MS2 removal in alluvial gravel. These findings concurred with the log10 reduction values, mass recoveries, attachment efficiencies and irreversible deposition rate constants. The modelling results suggested that the MS2 detachment rates were in the same order of magnitude as norovirus, but they were 1 order of magnitude faster than those of rotavirus and adenovirus. The attachment of viruses and MS2 was largely reversible with faster detachment than attachment rates, favouring free virus transport. These findings highlight the risk associated with continual virus transport through subsurface media if viruses are not inactivated and remobilising previously attached viruses could trigger contamination events. Thus, virus attachment reversibility should be considered in virus transport predictions in subsurface media. Further research is needed to compare surrogates with enteric viruses, especially norovirus, regarding their transport behaviours under different experimental conditions.


Assuntos
Água Subterrânea , Levivirus , Filtração , Humanos , Laboratórios , Areia
9.
Sci Total Environ ; 749: 141364, 2020 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-32836117

RESUMO

The recent detection of SARS-CoV-2 RNA in feces has led to speculation that it can be transmitted via the fecal-oral/ocular route. This review aims to critically evaluate the incidence of gastrointestinal (GI) symptoms, the quantity and infectivity of SARS-CoV-2 in feces and urine, and whether these pose an infection risk in sanitary settings, sewage networks, wastewater treatment plants, and the wider environment (e.g. rivers, lakes and marine waters). A review of 48 independent studies revealed that severe GI dysfunction is only evident in a small number of COVID-19 cases, with 11 ± 2% exhibiting diarrhea and 12 ± 3% exhibiting vomiting and nausea. In addition to these cases, SARS-CoV-2 RNA can be detected in feces from some asymptomatic, mildly- and pre-symptomatic individuals. Fecal shedding of the virus peaks in the symptomatic period and can persist for several weeks, but with declining abundances in the post-symptomatic phase. SARS-CoV-2 RNA is occasionally detected in urine, but reports in fecal samples are more frequent. The abundance of the virus genetic material in both urine (ca. 102-105 gc/ml) and feces (ca. 102-107 gc/ml) is much lower than in nasopharyngeal fluids (ca. 105-1011 gc/ml). There is strong evidence of multiplication of SARS-CoV-2 in the gut and infectious virus has occasionally been recovered from both urine and stool samples. The level and infectious capability of SARS-CoV-2 in vomit remain unknown. In comparison to enteric viruses transmitted via the fecal-oral route (e.g. norovirus, adenovirus), the likelihood of SARS-CoV-2 being transmitted via feces or urine appears much lower due to the lower relative amounts of virus present in feces/urine. The biggest risk of transmission will occur in clinical and care home settings where secondary handling of people and urine/fecal matter occurs. In addition, while SARS-CoV-2 RNA genetic material can be detected by in wastewater, this signal is greatly reduced by conventional treatment. Our analysis also suggests the likelihood of infection due to contact with sewage-contaminated water (e.g. swimming, surfing, angling) or food (e.g. salads, shellfish) is extremely low or negligible based on very low predicted abundances and limited environmental survival of SARS-CoV-2. These conclusions are corroborated by the fact that tens of million cases of COVID-19 have occurred globally, but exposure to feces or wastewater has never been implicated as a transmission vector.


Assuntos
COVID-19 , Gastroenteropatias , Diarreia , Fezes , Humanos , SARS-CoV-2
10.
Environ Int ; 126: 430-442, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30836310

RESUMO

Waterborne and shellfish-borne enteric viruses associated with wastewater-polluted coastal waters (e.g. Norovirus, Hepatitis A/E viruses, Adenovirus) represent a major threat to human health. Improved understanding of the locations and periods of heightened risks can help target mitigation measures and improve public health. We developed a river-estuary-coast model to simulate virus dispersal, driven by point source discharges and river flows in combination with tidal forcing. Viral inputs were based on measured wastewater adenovirus concentrations and the model was implemented with or without viral die-off. We applied the model to the Conwy river (North Wales, UK), through the estuary, to the Irish Sea coast where bathing waters and shellfisheries are known to be prone to viral contamination. Using a suite of scenarios, we showed that river flow was the primary control of viral export to the coast. Since the Conwy catchment is short and steep, and the estuary is small and river-dominated, short-duration high intensity 'flash floods' were shown to transport viruses through the estuary and out to sea, despite dilution or die-off effects. Duplicating flow events (i.e., storm clustering) did not double the virus export since the virus re-entered the estuary on the flood tide. The tidal magnitude and timing of high water relative to peak river flow were also important drivers regulating viral dispersal. A worst-case event simulation (i.e., combining high river flows with high viral loading and high spring tide) resulted in increased concentrations of virus at nearby coasts, although the spatial spread was similar to the previous scenarios. Our results suggest that impact models for predicting and mitigating episodes of poor microbiological water quality may require careful representation of the intensity and timings of river flow when evaluating pathogen exposure risk.


Assuntos
Adenoviridae/isolamento & purificação , Estuários , Modelos Teóricos , Rios/microbiologia , Águas Residuárias/microbiologia , Monitoramento Ambiental/métodos , Inundações , Estações do Ano , País de Gales , Qualidade da Água
11.
Food Environ Virol ; 11(2): 113-119, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30758724

RESUMO

The discharge of human-derived wastewater represents a major threat to water quality with the potential for waterborne disease outbreaks mainly associated with enteric viruses. To prevent illnesses, indicators associated with fecal contamination are monitored in polluted areas, however, their prevalence often does not correlate well with viral pathogens. In this study, we used crAssphage, a recently discovered human-specific gut-associated bacteriophage, for the surveillance of wastewater-derived viral contamination. Untreated and treated wastewater, surface water, sediment and mussel samples were collected monthly over 1 year from the Conwy River and estuary (UK) and were analyzed for crAssphage marker by quantitative PCR. This is the first long-term catchment-to-coast scale study of environmental crAssphage concentrations. CrAssphage was detected in all sample types and showed no distinct seasonal pattern. CrAssphage concentrations were 2 × 105-109 genome copies (gc)/L in all untreated wastewater influent and 107-108 gc/L in secondary treated effluent samples, 3 × 103 gc/L-3 × 107 gc/L in surface water samples (94% positive) and 2 × 102-104 gc/g sediment (68% positive) and mussel digestive tissue (79% positive). CrAssphage concentrations were 1-5 log10 higher than human enteric virus titers (norovirus, sapovirus, adenovirus, polyomavirus). Our results indicate that crAssphage is well suited to tracking human wastewater contamination and pollution risk assessment in aquatic environments.


Assuntos
Enterovirus/isolamento & purificação , Rios/virologia , Águas Residuárias/virologia , Animais , Bivalves/virologia , Enterovirus/classificação , Enterovirus/genética , Monitoramento Ambiental , Fezes/virologia , Sedimentos Geológicos/virologia , Humanos , Estações do Ano , Esgotos , Reino Unido , Poluição da Água
12.
Environ Sci Pollut Res Int ; 25(33): 33391-33401, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30259243

RESUMO

Understanding the abundance and fate of human viral pathogens in wastewater is essential when assessing the public health risks associated with wastewater discharge to the environment. Typically, however, the microbiological monitoring of wastewater is undertaken on an infrequent basis and peak discharge events may be missed leading to the misrepresentation of risk levels. To evaluate diurnal patterns in wastewater viral loading, we undertook 3-day sampling campaigns with bi-hourly sample collection over three seasons at three wastewater treatment plants. Untreated influent was collected at Ganol and secondary-treated effluent was sampled at Llanrwst and Betws-y-Coed (North Wales, UK). Our results confirmed the presence of human adenovirus (AdV), norovirus genotypes I and II (NoVGI and NoVGII) in both influent and effluent samples while sapovirus GI (SaVGI) was only detected in influent water. The AdV titre was high and relatively constant in all samples, whereas the NoVGI, NoVGII and SaVGI showed high concentrations during autumn and winter and low counts during the summer. Diurnal patterns were detected in pH and turbidity for some sampling periods; however, no such changes in viral titres were observed apart from slight fluctuations in the influent samples. Our findings suggest that viral particle number in wastewater is not affected by daily chemical fluctuations. Hence, a grab sample taken at any point during the day may be sufficient to enumerate the viral load of wastewater effluent within an order of magnitude while four samples a day are recommended for testing wastewater influent samples.


Assuntos
Adenovírus Humanos/isolamento & purificação , Enterovirus/isolamento & purificação , Estações do Ano , Águas Residuárias/virologia , Microbiologia da Água/normas , Purificação da Água/métodos , Adenovírus Humanos/genética , Enterovirus/genética , Genótipo , Humanos , Saúde Pública , País de Gales , Águas Residuárias/química
13.
Sci Total Environ ; 634: 1174-1183, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29710623

RESUMO

Enteric viruses represent a global public health threat and are implicated in numerous foodborne and waterborne disease outbreaks. Nonetheless, relatively little is known of their fate and stability in the environment. In this study we used carefully validated methods to monitor enteric viruses, namely adenovirus (AdV), JC polyomavirus (JCV), noroviruses (NoVs), sapovirus (SaV) and hepatitis A and E viruses (HAV and HEV) from wastewater source to beaches and shellfish beds. Wastewater influent and effluent, surface water, sediment and shellfish samples were collected in the Conwy catchment (North Wales, UK) once a month for one year. High concentrations of AdV and JCV were found in the majority of samples, and no seasonal patterns were observed. No HAV and HEV were detected and no related illnesses were reported in the area during the period of sampling. Noroviruses and SaV were also detected at high concentrations in wastewater and surface water, and their presence correlated with local gastroenteritis outbreaks during the spring and autumn seasons. Noroviruses were also found in estuarine sediment and in shellfish harvested for human consumption. As PCR-based methods were used for quantification, viral infectivity and degradation was estimated using a NoV capsid integrity assay. The assay revealed low-levels of viral decay in wastewater effluent compared to influent, and more significant decay in environmental waters and sediment. Results suggest that AdV and JCV may be suitable markers for the assessment of the spatial distribution of wastewater contamination in the environment; and pathogenic viruses can be directly monitored during and after reported outbreaks to prevent further environment-derived illnesses.


Assuntos
Monitoramento Ambiental , Eliminação de Resíduos Líquidos/estatística & dados numéricos , Águas Residuárias/virologia , Microbiologia da Água , Poluição da Água/estatística & dados numéricos , Estações do Ano , Águas Residuárias/estatística & dados numéricos
14.
J Gen Virol ; 99(4): 567-573, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29517483

RESUMO

The Polyomaviridae is a diverse family of circular double-stranded DNA viruses. Polyomaviruses have been isolated from a wide array of animal hosts. An understanding of the evolutionary and ecological dynamics of these viruses is essential to understanding the pathogenicity of polyomaviruses. Using a high throughput sequencing approach, we identified a novel polyomavirus in an emerald notothen (Trematomus bernacchii) sampled in the Ross sea (Antarctica), expanding the known number of fish-associated polyomaviruses. Our analysis suggests that polyomaviruses belong to three main evolutionary clades; the first clade is made up of all recognized terrestrial polyomaviruses. The fish-associated polyomaviruses are not monophyletic, and belong to two divergent evolutionary lineages. The fish viruses provide evidence that the evolution of the key viral large T protein involves gain and loss of distinct domains.


Assuntos
Evolução Molecular , Doenças dos Peixes/virologia , Infecções por Polyomavirus/veterinária , Polyomavirus/classificação , Polyomavirus/isolamento & purificação , Animais , Regiões Antárticas , Antígenos Virais de Tumores/química , Antígenos Virais de Tumores/genética , Perciformes/virologia , Filogenia , Polyomavirus/química , Polyomavirus/genética , Infecções por Polyomavirus/virologia , Domínios Proteicos
15.
PLoS Pathog ; 12(4): e1005574, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27093155

RESUMO

Polyomaviruses are a family of DNA tumor viruses that are known to infect mammals and birds. To investigate the deeper evolutionary history of the family, we used a combination of viral metagenomics, bioinformatics, and structural modeling approaches to identify and characterize polyomavirus sequences associated with fish and arthropods. Analyses drawing upon the divergent new sequences indicate that polyomaviruses have been gradually co-evolving with their animal hosts for at least half a billion years. Phylogenetic analyses of individual polyomavirus genes suggest that some modern polyomavirus species arose after ancient recombination events involving distantly related polyomavirus lineages. The improved evolutionary model provides a useful platform for developing a more accurate taxonomic classification system for the viral family Polyomaviridae.


Assuntos
Evolução Biológica , Interações Hospedeiro-Parasita/genética , Polyomavirus/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Peixes , Modelos Moleculares , Dados de Sequência Molecular , Filogenia , Escorpiões , Ovinos
16.
J Gen Virol ; 96(Pt 4): 851-857, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25537375

RESUMO

Little is known about viruses associated with Antarctic animals, although they are probably widespread. We recovered a novel polyomavirus from Adélie penguin (Pygoscelis adeliae) faecal matter sampled in a subcolony at Cape Royds, Ross Island, Antarctica. The 4988 nt Adélie penguin polyomavirus (AdPyV) has a typical polyomavirus genome organization with three ORFs that encoded capsid proteins on the one strand and two non-structural protein-coding ORFs on the complementary strand. The genome of AdPyV shared ~60 % pairwise identity with all avipolyomaviruses. Maximum-likelihood phylogenetic analysis of the large T-antigen (T-Ag) amino acid sequences showed that the T-Ag of AdPyV clustered with those of avipolyomaviruses, sharing between 48 and 52 % identities. Only three viruses associated with Adélie penguins have been identified at a genomic level, avian influenza virus subtype H11N2 from the Antarctic Peninsula and, respectively, Pygoscelis adeliae papillomavirus and AdPyV from capes Crozier and Royds on Ross Island.


Assuntos
Polyomavirus/isolamento & purificação , Spheniscidae/virologia , Sequência de Aminoácidos , Animais , Regiões Antárticas , Antígenos Virais de Tumores/genética , Genoma Viral , Vírus da Influenza A/genética , Influenza Aviária/virologia , Dados de Sequência Molecular , Papillomaviridae/classificação , Papillomaviridae/genética , Papillomaviridae/isolamento & purificação , Filogenia , Polyomavirus/classificação , Polyomavirus/genética
17.
Water Res ; 62: 167-79, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24954130

RESUMO

Rotavirus (RoV) and adenovirus (AdV) are important viral pathogens for the risk analysis of drinking water. Despite this, little is known about their retention and transport behaviors in porous media due to a lack of representative surrogates. We developed RoV and AdV surrogates by covalently coupling 70-nm sized silica nanoparticles with specific proteins and a DNA marker for sensitive detection. Filtration experiments using beach sand columns demonstrated the similarity of the surrogates' concentrations, filtration efficiencies and attachment kinetics to those of the target viruses. The surrogates showed the same magnitude of concentration reduction as the viruses. Conversely, MS2 phage (a traditional virus model) over-predicted concentrations of AdV and RoV by 1- and 2-orders of magnitude respectively. The surrogates remained stable in size, surface charge and DNA concentration for at least one year. They can be easily and rapidly detected down to a single particle. Preliminary tests suggest that they were readily detectable in a number of environmental waters and treated effluent. With up-scaling validation in pilot trials, the surrogates developed here could be a cost-effective new tool for studying virus retention and transport in porous media. Examples include assessing filter efficacy in water and wastewater treatment, tracking virus migration in groundwater after effluent land disposal, and establishing safe setback distances for groundwater protection.


Assuntos
Adenoviridae/fisiologia , DNA/química , Filtração/métodos , Nanopartículas/química , Proteínas/química , Rotavirus/fisiologia , Dióxido de Silício/química , Adenoviridae/ultraestrutura , Simulação por Computador , Eletroforese em Gel de Ágar , Hidrodinâmica , Levivirus/ultraestrutura , Movimento (Física) , Nanopartículas/ultraestrutura , Rotavirus/ultraestrutura , Solo , Eletricidade Estática
18.
Acta Microbiol Immunol Hung ; 61(1): 19-26, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24631751

RESUMO

The transmission route of giardiasis not yet understood and why some infected individuals remain asymptomatic while others become quite ill. The drinking water quality is supposedly responsible for the prevalence of asymptomatic Giardia duodenalis infections in different areas, therefore asymptomatic giardiasis has been investigated in three water supply areas of Hungary: three hundred stool samples from inhabitants of Budapest, Füzér and Mátrafüred were examined by immunological and molecular methods for the presence of G. duodenalis infections. Individuals were asked to fill out a validated questionnaire at the time of stool collection and the interview covered demographic data, family life, education and travel history.In Budapest and in Mátrafüred in one stool sample G. duodenalis Assemblage A, whereas in Füzér once G. duodenalis Assemblage A, once Assemblage B and twice mixed infection were detected. We found higher prevalence rate of 4% of G. duodenalis infections of asymptomatic people in the village Füzér, where the removal of the Giardia cysts of the drinking water treatment plant was not effective. This study throws a light the need to look into the possibility of other risks of Giardia infections such as water transmission routes. To our knowledge, this is the first study evaluating the prevalence of G. duodenalis infections in asymptomatic persons in Hungary.


Assuntos
Giardia/isolamento & purificação , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Fezes/microbiologia , Feminino , Genótipo , Giardia/classificação , Giardia/genética , Humanos , Hungria , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA