Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant Methods ; 2: 15, 2006 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-16953878

RESUMO

BACKGROUND: Mg chelatase is a multi-subunit enzyme that catalyses the first committed step of chlorophyll biosynthesis. Studies in higher plants and algae indicate that the Mg chelatase reaction product, Mg-protoporphyrin IX plays an essential role in nuclear-plastid interactions. A number of Mg chelatase mutants have been isolated from higher plants, including semi-dominant alleles of ChlI, the gene encoding the I subunit of the enzyme. To investigate the function of higher plant CHLI, bacterial orthologues have been engineered to carry analogous amino acid substitutions to the higher plant mutations and the phenotypes examined through in vitro characterization of heterologously produced proteins. Here, we demonstrate the utility of a transient expression system in Nicotiana benthamiana for rapidly assaying mutant variants of the maize CHLI protein in vivo. RESULTS: Transient expression of mutant maize ChlI alleles in N. benthamiana resulted in the formation of chlorotic lesions within 4 d of inoculation. Immunoblot analyses confirmed the accumulation of maize CHLI protein suggesting that the chlorosis observed resulted from an interaction between maize CHLI and endogenous components of the N. benthamiana chlorophyll biosynthetic pathway. On the basis of this assay, PCR-based cloning techniques were used to rapidly recombine polymorphisms present in the alleles studied allowing confirmation of causative lesions. A PCR-based mutagenesis was conducted and clones assayed by transient expression. A number of novel allelic variants of maize ZmChlI were generated and analyzed using this assay, demonstrating the utility of this technique for fine mapping. CONCLUSION: Transient expression provides a convenient, high-throughput, qualitative assay for functional variation in the CHLI protein. Furthermore, we suggest that the approach used here would be applicable to the analysis of other plastid-localized proteins where gain-of-function mutations will result in readily observable mutant phenotypes.

2.
Plant Mol Biol ; 60(1): 95-106, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16463102

RESUMO

Semi-dominant Oil yellow1 (Oy1) mutants of maize (Zea mays) are deficient in the conversion of protoporphyrin IX to magnesium protoporphyrin IX, the first committed step of chlorophyll biosynthesis. Using a candidate gene approach, a cDNA clone was isolated that was predicted to encode the I subunit of magnesium chelatase (ZmCHLI) and mapped to the same genetic interval as Oy1. Allelic variation was identified at ZmCHLI between wild-type plants and plants carrying semi-dominant alleles of Oy1. These differences revealed putative amino acid substitutions that could account for the alterations in protein function. Candidate lesions were tested by introduction of homologous changes into the Synechocystis magnesium chelatase I gene (SschlI) and characterization of the activity of mutant protein variants in an in vitro enzyme activity assay. The results of these analyses suggest that SsChlI protein variants containing the substitutions identified in the dominant Oy1 maize alleles lack activity necessary for magnesium chelation and confer a semi-dominant phenotype via competitive inhibition of wild-type SsChlI.


Assuntos
Liases/genética , Zea mays/genética , Sequência de Aminoácidos , Clonagem Molecular , Ligação Genética/genética , Liases/química , Liases/metabolismo , Magnésio/metabolismo , Dados de Sequência Molecular , Mutação/genética , Folhas de Planta/metabolismo , Polimorfismo Genético/genética , Subunidades Proteicas/genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
3.
Plant Physiol ; 136(1): 2771-81, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15347785

RESUMO

The light insensitive maize (Zea mays) mutant elongated mesocotyl1 (elm1) has previously been shown to be deficient in the synthesis of the phytochrome chromophore 3E-phytochromobilin (PPhiB). To identify the Elm1 gene, a maize homolog of the Arabidopsis PPhiB synthase gene AtHY2 was isolated and designated ZmHy2. ZmHy2 encodes a 297-amino acid protein of 34 kD that is 50% identical to AtHY2. ZmHY2 was predicted to be plastid localized and was targeted to chloroplasts following transient expression in tobacco (Nicotiana plumbaginifolia) leaves. Molecular mapping indicated that ZmHy2 is a single copy gene in maize that is genetically linked to the Elm1 locus. Sequence analysis revealed that the ZmHy2 gene of elm1 mutants contains a single G to A transition at the 3' splice junction of intron III resulting in missplicing and premature translational termination. However, flexibility in the splicing machinery allowed a small pool of in-frame ZmHy2 transcripts to accumulate in elm1 plants. In addition, multiple ZmHy2 transcript forms accumulated in both wild-type and elm1 mutant plants. ZmHy2 splice variants were expressed in Escherichia coli and products examined for activity using a coupled apophytochrome assembly assay. Only full-length ZmHY2 (as defined by homology to AtHY2) was found to exhibit PPhiB synthase activity. Thus, the elm1 mutant of maize is deficient in phytochrome response due to a lesion in a gene encoding phytochromobilin synthase that severely compromises the PPhiB pool.


Assuntos
Genes de Plantas , Oxirredutases/genética , Zea mays/enzimologia , Zea mays/genética , Sequência de Aminoácidos , Sequência de Bases , DNA de Plantas/genética , Escherichia coli/genética , Ligação Genética , Dados de Sequência Molecular , Mutação , Oxirredutases/metabolismo , Plastídeos/enzimologia , Splicing de RNA , RNA de Plantas/genética , RNA de Plantas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA