Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 351: 141251, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38253084

RESUMO

This study presents the catalytic pyrolysis of microalgae, Chlorella vulgaris (C. vulgaris), using pure CH4 and H2-rich gas evolved from CH4 decomposition on three different HZSM-5 catalysts loaded with Zn, Ga, and Pt, aimed specifically at producing high-value mono-aromatics such as benzene, toluene, ethylbenzene, and xylene (BTEX). In comparison with that for the typical inert N2 environment, a pure CH4 environment increased the bio-oil yield from 32.4 wt% to 37.4 wt% probably due to hydrogen and methyl radical insertion in the bio-oil components. Furthermore, the addition of bimetals further increased bio-oil yield. For example, ZnPtHZ led to a bio-oil yield of 47.7 wt% in pure CH4. ZnGaHZ resulted in the maximum BTEX yield (6.68 wt%), which could be explained by CH4 activation, co-aromatization, and hydrodeoxygenation. The BTEX yield could be further increased to 7.62 wt% when pyrolysis was conducted in H2-rich gas evolved from CH4 decomposition over ZnGaHZ, as rates of aromatization and hydrodeoxygenation were relatively high under this condition. This study experimentally validated that the combination of ZnGaHZ and CH4 decomposition synergistically increases BTEX production using C. vulgaris.


Assuntos
Chlorella vulgaris , Microalgas , Óleos de Plantas , Polifenóis , Temperatura Alta , Pirólise , Tolueno , Benzeno , Xilenos , Catálise , Zinco , Biocombustíveis
2.
Environ Res ; 219: 115070, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36549497

RESUMO

In this study, nickel-loaded perovskite oxides catalysts were synthesized via the impregnation of 10%Ni on XTiO3 (X = Ce, Sr, La, Ba, Ca, and Fe) supports and employed in the catalytic steam gasification of swine manure to produce H2-rich syngas for the first time. The synthesized catalysts were characterized using BET, H2-TPR, XRD, HR-TEM, and EDX analysis. Briefly, using perovskite supports resulted in the production of ultrafine catalyst nanoparticles with a uniform dispersion of Ni particles. According to the catalytic activity test, the gas yield showed the increment as 10% Ni/LaTiO3 < 10% Ni/FeTiO3 < 10% Ni/CeTiO3 < 10% Ni/BaTiO3 < 10% Ni/SrTiO3 < 10% Ni/CaTiO3. Meanwhile, zero coke formation was achieved due to the oxygen mobility of prepared catalysts. Also, the increase in the H2 production for the applied catalysts was in the sequence as 10% Ni/CeTiO3 < 10% Ni/FeTiO3 < 10% Ni/LaTiO3 < 10% Ni/BaTiO3 < 10% Ni/SrTiO3 < 10% Ni/CaTiO3. The maximum H2 selectivity (∼48 vol%) obtained by10% Ni/CaTiO3 was probably due to the synergistic effect of Ni and Ti on enhancing the water-gas shift reaction, and Ca on creating the maximum oxygen mobility compared to other alkaline earth metals doped at the A place of perovskite. Overall, this study provides a suitable solution for enhanced H2 production through steam gasification of swine manure along with suggesting the appropriate supports to prevent Ni deactivation by lowering coke formation at the same time.


Assuntos
Coque , Vapor , Animais , Suínos , Níquel , Esterco , Óxidos , Catálise , Oxigênio
3.
J Nanosci Nanotechnol ; 21(7): 3955-3959, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33715724

RESUMO

Catalytic pyrolysis oil (CPO) was produced from lignin using the ex-situ mechanism and nanoporous HZSM-5 (SiO2/Al2O3 = 50) as a catalyst. The oil contained phenolics, esters, acids, and benzene derivatives as the major constituents. The emulsification of CPO in diesel was tested with several emulsifier combinations such as Span 80 and Tween 60, Span 80 and Atlox 4916, and Atlox 4916 and Zephrym PD3315 in the HLB range of 5.8-7.3. The HLB value of 5.8 using the combination of Span 80 and Atlox 4916 and the CPO:emulsifier:diesel ratio of 5:2:93 (wt%), provided a stable emulsion for 10 days. The physiochemical properties of that emulsion were comparable to diesel. Hence, emulsions of CPO and diesel can potentially be used as a diesel engine fuel.


Assuntos
Nanoporos , Zeolitas , Biocombustíveis , Gasolina , Pirólise , Dióxido de Silício
4.
J Hazard Mater ; 397: 122581, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-32417605

RESUMO

This study focused on the simultaneous removal of NO and SO2 from an industrial flue gas stream. To evaluate the removal efficiency of NO and SO2 using O3 and NH3, the consumption of two reactants (O3 and NH3) in line with the conversion of NO and SO2 was quantified experimentally. In addition, NO and SO2 were converted to valuable fertilizers, NH4NO3 and (NH4)2SO4. To identify a principle strategy to enhance the generation of fertilizer, Fourier transform infrared spectroscopy was used to examine the reaction mechanisms for the formation of NH4NO3 and (NH4)2SO4. Acceleration of SO2 oxidation could be achieved effectively by adding NO to a gas mixture of SO2, NH3, and O3. The formation of HNO3 might be enhanced by the simultaneous feeding of NO and SO2. Particle generation was also 10 times higher for NH3/(NO + SO2) than for NH3/NO and for NH3/SO2, which is a prominent feature of this study. Moreover, the introduction of steam had a positive influence on particle generation. This method offers dual applications for NO and SO2 removal from a flue gas stream and direct fertilizer generation.

5.
Environ Res ; 184: 109267, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32113026

RESUMO

Emulsification is a cost effective and simple method to use pyrolysis oil (or bio-oil) along with diesel as an emulsified fuel. Several combinations of emulsifiers, such as Span 80 and Atlox 4916, Span 80 and Zephrym PD3315, and Atlox 4916 and Zephrym PD3315, were tested to obtain stable emulsions. Two set of reactors (ultrasonicator and agitator-based mechanical reactor system) were used for the process. The ether-extracted pyrolysis oil (EEO), emulsifier, and diesel content of 10%-15%, 3%, and 82-87% were exposed to an ultrasonic power of 40% and with an agitation rate of 900 rpm. The emulsions obtained using Span 80 and Zephrym PD3315 showed stratification within 10 min. The emulsions for Span 80 and Atlox 4916 with a ratio of 3/15/82 for Emulsifer/EEO/Diesel, and for Atlox 4916 and Zephrym PD3315 emulsifiers with a ratio of 3/10/87 for Emulsifer/EEO/Diesel remained stable for more than 15 days. The functional groups analysis showed the stability of the emulsion for Span 80 and Atlox 4916, whereas a change in the absorbance intensity was observed when Atlox 4916 and Zephrym PD3315 were used, indicating stratification.


Assuntos
Biocombustíveis , Éter , Pirólise , Emulsificantes , Éteres , Hexoses , Polietilenoglicóis
6.
J Environ Manage ; 232: 330-335, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30496962

RESUMO

Acetaldehyde removal tests were performed to compare the catalytic activity of the Kraft lignin char (KC), KOH-treated Kraft lignin char (KKC), and activated carbon (AC) along with their impregnation with Mn in a plasma reactor. The gasification characteristics (syngas content, and H2/CO ratio) of yellow poplar were investigated using nickel catalysts supported on KC, KKC, AC, and γ-Al2O3 in a U-type quartz reactor. KKC and Mn/KKC improved significantly the surface area and contents of O and N functional groups over the raw char. In particular, Mn/KKC showed the highest acetaldehyde-removal efficiency. The catalytic activity of Ni-impregnated KC, KKC, AC, and γ-Al2O3 decreased in the order of Ni/KKC > Ni/AC > Ni/KC > Ni/γ-Al2O3 for the gas yield and Ni/γ-Al2O3 >Ni/KC > Ni/AC >Ni/KKC for the oil yield, respectively. The Ni/KKC provides a more conducive environment for gasification, resulting in larger amounts of syngas (H2 and CO) in the product gases. Moreover, Ni impregnated with char may be the most inexpensive and effective solution for achieving maximum tar reduction and syngas generation.


Assuntos
Acetaldeído , Gases , Biomassa , Catálise , Lignina , Metais
7.
J Environ Manage ; 231: 694-700, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30396142

RESUMO

Bio-oil (biomass pyrolysis oil) has some undesirable properties (e.g., low heating value, high corrosiveness, and high viscosity) that restrain its direct use as a transportation fuel. The emulsification of bio-oil and diesel is an effective and convenient method to use bio-oil in the present transportation fuel infrastructure. The addition of an emulsifying agent (emulsifier or surfactant) to two immiscible liquids of diesel and bio-oil is an important step in emulsification. The hydrophilic-lipophilic balance (HLB) value, according to the chemical structure and characteristics of the emulsifier, is a key parameter for selecting a surfactant. In this study, an ether treatment of raw bio-oil was carried out to separate the ether-soluble fraction of bio-oil from its heavy (dark brown and highly viscous) fraction, and the ether-extracted bio-oil (EEO) was processed further for emulsification into diesel fuel. The effects of the HLB value of the emulsifier and the contents of EEO, diesel, and emulsifier on the stability of the EEO/diesel emulsion were investigated. To optimize the HLB value of the emulsifier, different HLB values (4.3-8.8), which were prepared by mixing different amounts of Span 80 and Tween 60 as surfactants, were used for the EEO and diesel emulsification. A HLB value of 7.3 with diesel, EEO, and emulsifier contents of 90, 5, 5 wt%, and 86, 7.4, 6.6 wt% resulted in EEO/diesel emulsions (without phase separation) stable for 40 and 35 days, respectively. Measurement of the high heating value (HHV) of the emulsified fuels gave a 44.32 and 43.68 MJ/kg values for the EEO to emulsifier mass ratios of 5:5 and 7.4:6.6, respectively. The stability of emulsified EEO and diesel was verified by TGA and FT-IR methods.


Assuntos
Gasolina , Polissorbatos , Emulsificantes , Emulsões , Hexoses , Óleos de Plantas , Polifenóis , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA