Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Prog ; 106(2): 368504231175331, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37231668

RESUMO

Breast cancer is a destructive lump type that affects women globally. Despite the availability of multi-directional therapeutic strategies, advanced stages of breast cancer are difficult to treat and impose major healthcare burdens. This situation reinforces the need to identify new potential therapeutic compounds with better clinical features. In this context, different treatment methods were included such as Endocrine therapy, chemotherapy, Radiation therapy, antimicrobial peptide-dependent growth inhibitor, liposome-based drug delivery, antibiotics used as a co-medication, photothermal, immunotherapy, and nano drug delivery systems such as Bombyx mori natural protein sericin and its mediated nanoparticles are promising biomedical agents. They have been tested as an anticancer agent against various malignancies in pre-clinical settings. The biocompatible and restricted breakdown properties of silk sericin and sericin-conjugated nanoparticles made them perfect contenders for a nanoscale drug-delivery system.


Assuntos
Bombyx , Neoplasias da Mama , Nanopartículas , Sericinas , Animais , Feminino , Humanos , Sericinas/metabolismo , Sericinas/farmacologia , Bombyx/metabolismo , Neoplasias da Mama/terapia , Nanopartículas/uso terapêutico
2.
J Burn Care Res ; 44(4): 800-809, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-36331804

RESUMO

Diabetes is involved in delayed wound healing that can be cured by natural products such as garlic, turmeric, and fibroin extracts. Alloxan monohydrate is used for inducing diabetes in mice. The percent wound contraction of garlic (150 mg/ml), turmeric (100 mg/ml), and fibroin (50 mg/ml), individually and in combinations garlic (150 mg/ml) + fibroin (50 mg/ml), turmeric (100 mg/ml) + fibroin (50 mg/ml), garlic (150 mg/ml) + turmeric (100 mg/ml), and garlic (150 mg/ml) + turmeric (100 mg/ml) + fibroin (50 mg/ml) was checked by evaluating the healing time, % wound contraction and histological analysis. The serum level of MMPs (MMP 2, MMP7, MMP 9), pro-inflammatory cytokines (TNF-α, IL-6, IL-8), and TIMPs were evaluated. With the combination of three extracts (Ga+Tu+Fi) garlic (150 mg/ml), turmeric (100 mg/ml) and fibroin (50 mg/ml), wounds healed in 12 days and had 97.3 ± 2.2% wound contraction. While the positive control (polyfax) and diabetic control (saline) wounds healed in 17- and 19-days with wound contraction of 96.7 ± 1.4% and 96.3 ± 1.1%, respectively. Histological analysis showed that the combination of Ga+Tu+Fi exhibited an increase in the growth of collagen fibers, fibroblasts number, and keratinocytes, and lessened inflammation of blood vessels. The combination of Ga+Tu+Fi significantly alleviated the serum concentration of TNF-α (14.2 ± 0.7 pg/ml), IL-6 (10.0 ± 1.0 pg/ml), IL-8 (16.0 ± 1.5 pg/ml), MMP2 (228.0 ± 18.1 pg/ml), MMP7 (271.0 ± 9.9 pg/ml), and MMP9 (141.0 ± 5.3 pg/ml) to diabetic control. The level of TIMPs (193.0 ± 9.1 pg/ml) was increased significantly with respect to diabetic control. We conclude that the combination of these biomaterials possessed high regenerative and healing capabilities and can be an effective remedy in the healing of chronic wounds in diabetic patients.


Assuntos
Queimaduras , Diabetes Mellitus , Fibroínas , Alho , Camundongos , Animais , Curcuma , Metaloproteinase 7 da Matriz , Fator de Necrose Tumoral alfa , Interleucina-6 , Interleucina-8 , Cicatrização
3.
J Hazard Mater ; 416: 125921, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492853

RESUMO

In-situ stabilization has been considered an effective way to remediate metal contaminated soil. Thus, pot experiments were undertaken to investigate the effectiveness of multiple stabilization agents such as biochar (BC), mussel shell (MS), zeolite (ZE) and limestone (LS) on the immobilization of Ni, physicochemical features and enzyme activities in polluted soil. Results showed that the sole application of Ni adversely affected the rapeseed growth, photosynthetic pigments, and antioxidative defense. However, the addition of amendments to the contaminated soil significantly reduced Ni bioavailability. The XRD analysis confirmed the formation of Ni related ligands and FTIR showed the presence of hydroxyl, carboxyl and sulfur functional groups, as well as complexation and adsorption of Ni on amendments. Among multiple amendments, biochar significantly enhanced plant biomass attributes and total chlorophyll content. Moreover, addition of amendments also strengthened the antioxidant defense by decreasing Ni induced oxidative stress (H2O2 and O2.-), increased macronutrient availability, reduced Ni uptake and improved soil health. The qPCR analysis showed that the Ni transporters were significantly suppressed by amendments, which is correlated with the lower accumulation of Ni in rapeseed. The present study showed that immobilizing agents, especially biochar, is an effective amendment to immobilize Ni in soil, which restricts its entry into the food chain.


Assuntos
Brassica napus , Poluentes do Solo , Carvão Vegetal , Peróxido de Hidrogênio , Níquel/análise , Estresse Oxidativo , Solo , Poluentes do Solo/análise
4.
Chemosphere ; 282: 130897, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34470145

RESUMO

Mussel shell (MS) and biochar (BC) are commonly used for the remediation of metal contaminated soil. However, less research has been focused to examine the efficacy of their combinations to reduce metal toxicity in crop plants. This study was therefore conducted to investigate the effects of BC, MS and their activated concoctions on the soil properties, enzyme activities and nickel (Ni) immobilization in aged Ni contaminated soil. Moreover, the growth, photosynthetic pigments and anti-oxidative machnery of Brassica napus plants has also been investigated in order to determine amendments efficiency in reducing soil Ni toxicity for plants. The results showed that the application of Ni adversely affected soil health and trigged stress responses by inducing oxidative stress in B. napus. However, the incorporation of amendments reduced the bioavailability of Ni, and the concoctions of BC and MS showed promising results in the immobilization of Ni. Among various combinations of BC and MS, treatment with BC + MS (3:1) significantly reduced Ni uptake, decreased reactive oxygen species (ROS) and enhanced antioxidant defense of B. napus plants. Results showed that amendment's combinations stimulated the transcriptional levels of ROS scavenging enzymes and suppressed the expression level of Ni transporters. The morphological and physical characterization techniques (i.e. SEM, BET, EDS, FTIR and X-ray diffraction analyses) showed that amendment's combinations had relatively higher Ni adsorption capacity, indicating that BC and MS concoctions are efficient immobilizing agents for minimizing Ni availability, preventing oxidative toxicity and promoting growth and biomass production in rapeseed plants under metal stress conditions.


Assuntos
Bivalves , Brassica napus , Poluentes do Solo , Animais , Carvão Vegetal , Níquel/análise , Níquel/toxicidade , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
5.
Theor Appl Genet ; 134(9): 2711-2726, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34089067

RESUMO

The production of a new allohexaploid Brassica crop (2n = AABBCC) is increasingly attracting international interest: a new allohexaploid crop could benefit from several major advantages over the existing Brassica diploid and allotetraploid species, combining genetic diversity and traits from all six crop species with additional allelic heterosis from the extra genome. Although early attempts to produce allohexaploids showed mixed results, recent technological and conceptual advances have provided promising leads to follow. However, there are still major challenges which exist before this new crop type can be realized: (1) incorporation of sufficient genetic diversity to form a basis for breeding and improvement of this potential crop species; (2) restoration of regular meiosis, as most allohexaploids are genetically unstable after formation; and (3) improvement of agronomic traits to the level of "elite" breeding material in the diploid and allotetraploid crop species. In this review, we outline these major prospects and challenges and propose possible plans to produce a stable, diverse and agronomically viable allohexaploid Brassica crop.


Assuntos
Brassica/genética , Cromossomos de Plantas/genética , Melhoramento Vegetal , Poliploidia , Brassica/crescimento & desenvolvimento , Fenótipo
6.
Physiol Plant ; 173(1): 100-115, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33011999

RESUMO

Isatis cappadocica is a well-known arsenic-hyperaccumulator, but there are no reports of its responses to cadmium (Cd). Nitric oxide (NO) is a signaling molecule, which induces cross-stress tolerance and mediates several physio-biochemical processes related to heavy metal toxicity. In this study, the effects of Cd and sodium nitroprusside (SNP as NO donor) on the growth, defense responses and Cd accumulation in I. cappadocica were investigated. When I. cappadocica was treated with 100 and 200 µM Cd, there was an insignificant inhibition of shoot growth. However, Cd stress at Cd400 treatment decreased significantly the dry weight of root and shoot by 73 and 38%, respectively, as compared to control. The application of SNP significantly improved the growth parameters and mitigated Cd toxicity. In addition, SNP decreased reactive oxygen species (ROS) production induced by Cd. The increased total thiol and glutathione (GSH) concentrations after SNP application may play a decisive role in maintaining cellular redox homeostasis, thereby protecting plants against oxidative damage under Cd stress. Bovine hemoglobin (Hb as NO scavenger) reduced the protective role of SNP, suggesting a major role of NO in the defensive effect of SNP. Furthermore, the reduction in shoot growth and the increase of oxidative damage were more severe after the addition of Hb, which confirms the protective role of NO against Cd-induced oxidative stress. The protective role of SNP in decreasing Cd-induced oxidative stress may be related to NO production, which can lead to stimulation of the thiols synthesis and improve defense system.


Assuntos
Cádmio , Isatis , Animais , Antioxidantes , Cádmio/toxicidade , Bovinos , Glutationa/metabolismo , Peróxido de Hidrogênio/farmacologia , Isatis/metabolismo , Óxido Nítrico/farmacologia , Doadores de Óxido Nítrico/farmacologia , Nitroprussiato/farmacologia , Estresse Oxidativo
7.
Biochem Pharmacol ; 173: 113749, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31830469

RESUMO

Omega-3 polyunsaturated fatty acids (PUFAs) including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been shown to protect the cardiovascular system, in part, by stimulating the endothelial formation of nitric oxide (NO). EPA:DHA 6:1 has been identified as a potent omega 3 PUFA formulation to induce endothelium-dependent vasorelaxation and activation of endothelial NO synthase (eNOS). This study examined whether intake of EPA:DHA 6:1 (500 mg/kg/day) for 2 weeks improves an established endothelial dysfunction in old rats (20 months old), and, if so, the underlying mechanism was subsequently determined. In the main mesenteric artery rings, an endothelial dysfunction characterized by a blunted NO component, an abolished endothelium-dependent hyperpolarization component, and increased endothelium-dependent contractile responses (EDCFs) are observed in old rats compared to young rats. Age-related endothelial dysfunction was associated with increased vascular formation of reactive oxygen species (ROS) and expression of eNOS, components of the local angiotensin system, senescence markers, and cyclooxygenase-2 (COX-2), and the downregulation of COX-1. The EPA:DHA 6:1 treatment improved the NO-mediated relaxation, reduced the EDCF-dependent contractile response and the vascular formation of ROS, and normalized the expression level of all target proteins in the old arterial wall. Thus, the present findings indicate that a 2-week intake of EPA:DHA 6:1 by old rats restored endothelium-dependent NO-mediated relaxations, most likely, by preventing the upregulation of the local angiotensin system and the subsequent formation of ROS.


Assuntos
Endotélio Vascular/fisiologia , Ácidos Graxos Ômega-3/administração & dosagem , Artérias Mesentéricas/fisiologia , NADPH Oxidases/metabolismo , Peptidil Dipeptidase A/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptor Tipo 1 de Angiotensina/metabolismo , Fatores Etários , Animais , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Ácidos Docosa-Hexaenoicos/administração & dosagem , Ácidos Docosa-Hexaenoicos/química , Ácido Eicosapentaenoico/administração & dosagem , Ácido Eicosapentaenoico/química , Ácidos Graxos Ômega-3/química , Imunofluorescência , Masculino , Artérias Mesentéricas/efeitos dos fármacos , Artérias Mesentéricas/metabolismo , Ratos Wistar , Proteína Supressora de Tumor p53/metabolismo , Vasodilatação/efeitos dos fármacos , Vasodilatação/fisiologia
8.
J Biomed Mater Res A ; 107(12): 2643-2666, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31390141

RESUMO

For cancer therapy, the usefulness of mesoporous silica nanoparticles (MPSNPs) has been widely discussed, likely due to its inorganic nature and excellent structural features. The MPSNPs-based chemotherapeutics have been promisingly delivered to their target sites that help to minimize side effects and improve therapeutic effectiveness. A wide array of studies have been conducted to functionalize drug-loaded MPSNPs using targeting ligands and stimuli-sensitive substances. In addition, anticancer drugs have been precisely delivered to their target sites using MPSNPs, which respond to multi-stimuli. Furthermore, MPSNPs have been extensively tested for their safety and compatibility. The toxicity level of MPSNPs is substantially lower as compared to that of colloidal silica; however, in oxidative stress, they exhibit cytotoxic features. The biocompatibility of MPSNPs can be improved by modifying their surfaces. This article describes the production procedures, functionalization, and applications of biocompatible MPSNPs in drug delivery.


Assuntos
Preparações de Ação Retardada/química , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química , Dióxido de Silício/química , Animais , Humanos , Nanomedicina Teranóstica/métodos
9.
Sci Rep ; 7(1): 10443, 2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28874677

RESUMO

Growth regulator herbicides are widely used in paddy fields to control weeds, however their role in conferring environmental stress tolerance in the crop plants are still elusive. In this study, the effects of recommended dose of 2,4-dichlorophenoxyacetic acid (2,4-D)  on growth, oxidative damage, antioxidant defense, regulation of cation transporter genes and anatomical changes in the roots of rice cultivars XS 134 (salt resistant) and ZJ 88 (salt sensitive) were investigated under different levels of saline stress. Individual treatments of saline stress and 2,4-D application induced oxidative damage as evidenced by decreased root growth, enhanced ROS production, more membrane damage and Na+ accumulation in sensitive cultivar compared to the tolerant cultivar. Conversely, combined treatments of 2,4-D and saline stress significantly alleviated the growth inhibition and oxidative stress in roots of rice cultivars by modulating lignin and callose deposition, redox states of AsA, GSH, and related enzyme activities involved in the antioxidant defense system. The expression analysis of nine cation transporter genes showed altered and differential gene expression in salt-stressed roots of sensitive and resistant cultivars. Together, these results suggest that 2,4-D differentially regulates the Na+ and K+ levels, ROS production, antioxidant defense, anatomical changes and cation transporters/genes in roots of rice cultivars.


Assuntos
Ácido 2,4-Diclorofenoxiacético/farmacologia , Antioxidantes/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Oryza/efeitos dos fármacos , Oryza/fisiologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/fisiologia , Salinidade , Proteínas de Transporte de Cátions/genética , Cátions/metabolismo , Expressão Gênica , Glutationa/metabolismo , Herbicidas/farmacologia , Estresse Oxidativo , Potássio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Tolerância ao Sal , Sódio/metabolismo
10.
Alcohol Clin Exp Res ; 40(12): 2537-2547, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27796078

RESUMO

BACKGROUND: Nicotine use increases alcohol drinking, suggesting that the combination of these drugs may produce synergistic effects in activating reward circuitry. Alternatively, use of either of these drugs may facilitate the development of cross-tolerance to the other to promote intake escalation. METHODS: In this study, adult male Wistar rats were chronically exposed to room air or chronic, intermittent nicotine vapor, which has been shown to produce symptoms of nicotine dependence as evidenced by elevated nicotine self-administration and a host of somatic and motivational withdrawal symptoms. We examined regional neuroadaptations in nicotine-experienced versus nonexperienced animals, focusing on changes in phosphorylation of the AMPA glutamate channel subunit GluA1 in reward-related brain regions as excitatory neuroadaptations are heavily implicated in both alcohol and nicotine addiction. RESULTS: During withdrawal, nicotine exposure and alcohol challenge (1 g/kg) interactively produced neuroadaptations in GluA1 phosphorylation in a brain region-dependent manner. Alcohol robustly increased protein kinase A-mediated phosphorylation of GluA1 at serine 845 in multiple regions. However, this neuroadaptation was largely absent in 3 areas (dorsomedial prefrontal cortex, dorsal striatum, and central amygdala) in nicotine-experienced animals. This interactive effect suggests a molecular tolerance to alcohol-stimulated phosphorylation of GluA1 in the context of nicotine dependence. CONCLUSIONS: Nicotine may modify the rewarding or reinforcing effects of alcohol by altering glutamate signaling in a region-specific manner, thereby leading to increased drinking in heavy smokers.


Assuntos
Tolerância a Medicamentos , Etanol/farmacologia , Nicotina/efeitos adversos , Receptores de AMPA/metabolismo , Síndrome de Abstinência a Substâncias/metabolismo , Administração por Inalação , Animais , Encéfalo/metabolismo , Interações Medicamentosas , Masculino , Nicotina/administração & dosagem , Fosforilação/efeitos dos fármacos , Ratos , Ratos Wistar
11.
BMC Genomics ; 17(1): 885, 2016 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-27821044

RESUMO

BACKGROUND: Chromium (Cr) being multifarious industrial used element, is considered a potential environmental threat. Cr found to be a prospective water and soil pollutant, and thus it is a current area of concern. Oilseed rape (Brassica napus L.) is well known as a major source of edible oil around the globe. Due to its higher growth, larger biomass and capability to uptake toxic materials B. napus is considered a potential candidate plant against unfavorable conditions. To date, no study has been done that described the Cr and GSH mechanism at RNA-Seq level. RESULTS: Both digital gene expression (DGE) and transcriptome profile analysis (TPA) approaches had opened new insights to uncover the several number of genes related to Cr stress and GSH alleviating mechanism in two leading cultivars (ZS 758 and Zheda 622) of B. napus plants. Data showed that Cr inhibited KEGG pathways i.e. stilbenoid, diarlyheptanoid and gingerol biosynthesis; limonene and pentose degradation and glutathione metabolism in ZS 758; and ribosome and glucosinolate biosynthesis in Zheda-622. On the other hand, vitamin B6, tryptophan, sulfur, nitrogen and fructose and manose metabolisms were induced in ZS 758, and zeatin biosynthesis, linoleic acid metabolism, arginine and proline metabolism, and alanine, asparate and glutamate metabolism pathways in Zheda 622. Cr increased the TFs that were related to hydralase activity, antioxidant activity, catalytic activity phosphatase and pyrophosphatase activity in ZS 758, and vitamin binding and oxidoreductase activity in Zheda 622. Cr also up-regulated the promising proteins related to intracellular membrane bounded organelles, nitrile hyrdatase activity, cytoskeleton protein binding and stress response. It also uncovered, a novel Cr-responsive protein (CL2535.Contig1_All) that was statistically increased as compared to control and GSH treated plants. Exogenously applied GSH successfully not only recovered the changes in metabolic pathways but also induced cysteine and methionine metabolism in ZS 758 and ubiquinone and other terpenoid-quinone biosynthesis pathways in Zheda 622. Furthermore, GSH increased the level of TFs i.e. the gene expression of antioxidant and catalytic activities, iron ion binding and hydrolase activity as compared with Cr. Moreover, results pointed out a novel GSH responsive protein (CL827.Contig3_All) whose expression was found to be significantly increased when compared than Cr stress. Results further delineated that GSH induced TFs such as glutathione disulphide oxidoreducatse and aminoacyl-tRNA ligase activity, and beta glucosidase activity in ZS 758. Similarly in Zheda 622, GSH induced the TFs for instance DNA binding and protein dimerization activity. GSH also highlighted the proteins that were involved in transportation, photosynthesis process, RNA polymerase activity, and against the metal toxicity. These results indicated that cultivar ZS 758 had better metabolism and showed higher tolerance against Cr toxicity. CONCLUSION: The responses of ZS 758 and Zheda 622 differed considerably at both physiological and transcriptional level. Moreover, RNA-Seq method explored the hazardous behavior of Cr as well as GSH up-regulating mechanism by activating plant metabolism, stress responsive genes, TFs and protein encyclopedia.


Assuntos
Brassica napus/efeitos dos fármacos , Brassica napus/fisiologia , Cromo/toxicidade , Glutationa/metabolismo , Intoxicação por Metais Pesados , Intoxicação/genética , Intoxicação/metabolismo , Transcriptoma , Biomassa , Análise por Conglomerados , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Redes e Vias Metabólicas , Metais Pesados/metabolismo , Mapeamento de Interação de Proteínas , Estresse Fisiológico/genética
12.
Ecotoxicol Environ Saf ; 134P1: 239-249, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27639199

RESUMO

Metal subcellular fractions and chemical profile highly reflect their level of toxicity to plants. Cadmium and Cu, two different but potentially toxic metals, were compared in the present study for their subcellular distribution and chemical forms in two Brassica napus cultivars (Zheda 622 and ZS 758). Five-week-old seedlings were hydroponically exposed to metal stress and analyzed after 15 days of treatment. In both cultivars, Cd was less retained at cell wall, thus major part of Cd accumulated in the soluble fraction. By contrast, handsome amount of Cu was sequestrated in both cell wall and vacuole containing fraction. Across sensitive organelles, Cu preferentially accumulated in chloroplasts, while Cd was equally distributed in chloroplasts and mitochondria; the two metals intruded nucleus at lesser degree. Further, Cd and Cu differentially interacted with various cellular ligands, and the extent of interaction was higher in the tolerant cultivar ZS 758. Copper was remarkably sequestrated by phosphates, and secondarily by peptide-ligands; inversely, the role of phosphates was secondary in Cd complexation, which was mainly achieved by peptide-ligands. Additional amount of Cu was aggregated with oxalates, but oxalate-bound Cd was scarcely detected. Current results have demonstrated varied toxicological and detoxification pathways of Cd and Cu in B. napus, suggesting that the efficiency of different alleviation strategies could vary against Cd and Cu toxicity to plants.

13.
PLoS One ; 10(4): e0123328, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25909456

RESUMO

It is evident from previous reports that 5-aminolevulinic acid (ALA), like other known plant growth regulators, is effective in countering the injurious effects of heavy metal-stress in oilseed rape (Brassica napus L.). The present study was carried out to explore the capability of ALA to improve cadmium (Cd2+) tolerance in B. napus through physiological, molecular, and proteomic analytical approaches. Results showed that application of ALA helped the plants to adjust Cd2+-induced metabolic and photosynthetic fluorescence changes in the leaves of B. napus under Cd2+ stress. The data revealed that ALA treatment enhanced the gene expressions of antioxidant enzyme activities substantially and could increase the expression to a certain degree under Cd2+ stress conditions. In the present study, 34 protein spots were identified that differentially regulated due to Cd2+ and/or ALA treatments. Among them, 18 proteins were significantly regulated by ALA, including the proteins associated with stress related, carbohydrate metabolism, catalysis, dehydration of damaged protein, CO2 assimilation/photosynthesis and protein synthesis/regulation. From these 18 ALA-regulated proteins, 12 proteins were significantly down-regulated and 6 proteins were up-regulated. Interestingly, it was observed that ALA-induced the up-regulation of dihydrolipoyl dehydrogenase, light harvesting complex photo-system II subunit 6 and 30S ribosomal proteins in the presence of Cd2+ stress. In addition, it was also observed that ALA-induced the down-regulation in thioredoxin-like protein, 2, 3-bisphosphoglycerate, proteasome and thiamine thiazole synthase proteins under Cd2+ stress. Taken together, the present study sheds light on molecular mechanisms involved in ALA-induced Cd2+ tolerance in B. napus leaves and suggests a more active involvement of ALA in plant physiological processes than previously proposed.


Assuntos
Brassica napus/metabolismo , Cádmio/metabolismo , Folhas de Planta/metabolismo , Proteoma , Proteômica , Ácido Aminolevulínico/farmacologia , Antioxidantes/metabolismo , Brassica napus/efeitos dos fármacos , Brassica napus/genética , Oxirredução , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Proteômica/métodos , Estresse Fisiológico , Transcrição Gênica
14.
Environ Sci Pollut Res Int ; 22(14): 10699-712, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25752633

RESUMO

Environmental contamination due to arsenic (As) has become a major risk throughout the world; this affects plant growth and productivity. Its accumulation in food chain may pose a severe threat to organisms. The present study was carried out to observe the toxic effects of As (0, 50, 100, and 200 µM) on physiological and biochemical changes in four Brassica napus cultivars (ZS 758, Zheda 619, ZY 50, and Zheda 622). Results showed that As toxicity provoked a significant inhibition in growth parameters of B. napus cultivars and this reduction was more obvious in cultivar Zheda 622. The highest concentration of MDA, H2O2, and O2 (-) contents in both leaf and root tissues were observed at 200 µM As level, and a gradual decrease was observed at lower concentrations. Increasing As concentration gradually decreased chlorophyll and carotenoids contents. Activity of antioxidant enzymes such as SOD, CAT, APX, GR, and GSH was positively correlated with As treatments in all cultivars. The microscopic study of leaves and roots at 200 µM As level showed the disorganization in cell organelles. Disturbance in the morphology of chloroplast, broken cell wall, increase in size, and number of starch grains and immature nucleus were found in leaf ultrastructures under higher concentration of As. Moreover, damaged nucleus, diffused cell wall, enlarged vacuoles, and a number of mitochondria were observed in root tip cells at 200 µM As level. These results suggest that B. napus cultivars have efficient mechanism to tolerate As toxicity, as evidenced by an increased level of antioxidant enzymes.


Assuntos
Arsênio/toxicidade , Brassica napus/enzimologia , Proteínas de Plantas/metabolismo , Plântula/enzimologia , Poluentes do Solo/toxicidade , Antioxidantes/metabolismo , Ascorbato Peroxidases/metabolismo , Brassica napus/efeitos dos fármacos , Brassica napus/ultraestrutura , Carotenoides/metabolismo , Catalase/metabolismo , Clorofila/metabolismo , Cloroplastos/efeitos dos fármacos , Cloroplastos/ultraestrutura , Glutationa Redutase/metabolismo , Peróxido de Hidrogênio/metabolismo , Malondialdeído/metabolismo , Oxirredução , Estresse Oxidativo , Peroxidase/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/enzimologia , Folhas de Planta/ultraestrutura , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/enzimologia , Raízes de Plantas/ultraestrutura , Plântula/efeitos dos fármacos , Plântula/ultraestrutura , Superóxido Dismutase/metabolismo
15.
Environ Sci Pollut Res Int ; 22(4): 3068-81, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25231737

RESUMO

In the present study, ameliorating role of hydrogen sulfide (H2S) in oilseed rape (Brassica napus L.) was studied with or without application of H2S donor sodium hydrosulfide (NaHS) (0.3 mM) in hydroponic conditions under three levels (0, 0.1 and 0.3 mM) of aluminum (Al). Results showed that addition of H2S significantly improved the plant growth, photosynthetic gas exchange, and nutrients concentration in the leaves and roots of B. napus plants under Al stress. Exogenously applied H2S significantly lowered the Al concentration in different plant parts, and reduced the production of malondialdehyde and reactive oxygen species by improving antioxidant enzyme activities in the leaves and roots under Al stress. Moreover, the present study indicated that exogenously applied H2S improved the cell structure and displayed clean mesophyll and root tip cells. The chloroplast with well-developed thylakoid membranes could be observed in the micrographs. Under the combined application of H2S and Al, a number of modifications could be observed in root tip cell, such as mitochondria, endoplasmic reticulum, and golgi bodies. Thus, it can be concluded that exogenous application of H2S under Al stress improved the plant growth, photosynthetic parameters, elements concentration, and biochemical and ultrastructural changes in leaves and roots of B. napus.


Assuntos
Alumínio/toxicidade , Brassica napus/crescimento & desenvolvimento , Brassica napus/metabolismo , Sulfeto de Hidrogênio/metabolismo , Fotossíntese/efeitos dos fármacos , Animais , Brassica napus/ultraestrutura , Cloroplastos/ultraestrutura , Sulfeto de Hidrogênio/farmacologia , Hidroponia , Peroxidação de Lipídeos/fisiologia , Malondialdeído/metabolismo , Microscopia Eletrônica de Transmissão , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sulfetos/farmacologia
16.
Oxid Med Cell Longev ; 2013: 493536, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24066190

RESUMO

Aconitase, the second enzyme of the tricarboxylic acid cycle encoded by ACO1 in the budding yeast Saccharomyces cerevisiae, catalyzes the conversion of citrate to isocitrate. aco1Δ results in mitochondrial DNA (mtDNA) instability. It has been proposed that Aco1 binds to mtDNA and mediates its maintenance. Here we propose an alternative mechanism to account for mtDNA loss in aco1Δ mutant cells. We found that aco1Δ activated the RTG pathway, resulting in increased expression of genes encoding citrate synthase. By deleting RTG1, RTG3, or genes encoding citrate synthase, mtDNA instability was prevented in aco1Δ mutant cells. Increased activity of citrate synthase leads to iron accumulation in the mitochondria. Mutations in MRS3 and MRS4, encoding two mitochondrial iron transporters, also prevented mtDNA loss due to aco1Δ. Mitochondria are the main source of superoxide radicals, which are converted to H2O2 through two superoxide dismutases, Sod1 and Sod2. H2O2 in turn reacts with Fe(2+) to generate very active hydroxyl radicals. We found that loss of Sod1, but not Sod2, prevents mtDNA loss in aco1Δ mutant cells. We propose that mtDNA loss in aco1Δ mutant cells is caused by the activation of the RTG pathway and subsequent iron citrate accumulation and toxicity.


Assuntos
Aconitato Hidratase/metabolismo , DNA Mitocondrial/genética , Saccharomyces cerevisiae/enzimologia , Aconitato Hidratase/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Proteína 1 Reguladora do Ferro/genética , Proteína 1 Reguladora do Ferro/metabolismo , Microscopia de Fluorescência , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA