Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 16(11): e0252559, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34762669

RESUMO

Syringomyelia (SM) is a spinal cord disorder in which a cyst (syrinx) filled with fluid forms in the spinal cord post-injury/disease, in patients syrinx symptoms include loss of pain and temperature sensation or locomotion deficit. Currently, there are no small animal models and connected tools to help study the functional impacts of SM. The objective of this study was to determine the detectability of subtle locomotion deficits due to syrinx formation/expansion in post-traumatic syringomyelia (PTSM) rat model using the recently reported method of Gait Analysis Instrumentation, and Technology Optimized for Rodents (GAITOR) with Automated Gait Analysis Through Hues and Areas (AGATHA) technique. First videos of the rats were collected while walking in an arena (using GAITOR) followed by extracting meaningful locomotion information from collected videos using AGATHA protocol. PTSM injured rats demonstrated detectable locomotion deficits in terms of duty factor imbalance, paw placement accuracy, step contact width, stride length, and phase dispersion parameters compared to uninjured rats due to SM. We concluded that this technique could detect mild and subtle locomotion deficits associated with PTSM injury, which also in future work could be used further to monitor locomotion responses after different treatment strategies for SM.


Assuntos
Hiperalgesia/fisiopatologia , Locomoção/fisiologia , Medula Espinal/fisiopatologia , Siringomielia/fisiopatologia , Caminhada/fisiologia , Animais , Modelos Animais de Doenças , Análise da Marcha , Masculino , Medição da Dor , Ratos , Ratos Wistar
2.
ACS Chem Neurosci ; 12(19): 3567-3578, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34550670

RESUMO

Syringomyelia (SM) is primarily characterized by the formation of a fluid-filled cyst that forms in the parenchyma of the spinal cord following injury or other pathology. Recent omics studies in animal models have identified dysregulation of solute carriers, channels, transporters, and small molecules associated with osmolyte regulation during syrinx formation/expansion in the spinal cord. However, their connections to syringomyelia etiology are poorly understood. In this study, the biological functions of the potent osmolyte betaine and its associated solute carrier betaine/γ-aminobutyric acid (GABA) transporter 1 (BGT1) were studied in SM. First, a rat post-traumatic SM model was used to demonstrate that the BGT1 was primarily expressed in astrocytes in the vicinity of syrinxes. In an in vitro system, we found that astrocytes uptake betaine through BGT1 to regulate cell size under hypertonic conditions. Treatment with BGT1 inhibitors, especially NNC 05-2090, demonstrated midhigh micromolar range potency in vitro that reversed the osmoprotective effects of betaine. Finally, the specificity of these BGT1 inhibitors in the CNS was demonstrated in vivo, suggesting feasibility for targeting betaine transport in SM. In summary, these data provide an enhanced understanding of the role of betaine and its associated solute carrier BGT1 in cell osmoregulation and implicates the active role of betaine and BGT1 in syringomyelia progression.


Assuntos
Betaína , Siringomielia , Animais , Betaína/farmacologia , Proteínas da Membrana Plasmática de Transporte de GABA , Osmorregulação , Ratos , Ácido gama-Aminobutírico/metabolismo
3.
Neural Regen Res ; 16(11): 2293-2298, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33818515

RESUMO

Precise assessment of spinal cord cystic lesions is crucial to formulate effective therapeutic strategies, yet histological assessment of the lesion remains the primary method despite numerous studies showing inconsistent results regarding estimation of lesion size via histology. On the other hand, despite numerous advances in micro-computed tomography (micro-CT) imaging and analysis that have allowed precise measurements of lesion size, there is not enough published data on its application to estimate intraspinal lesion size in laboratory animal models. This work attempts to show that micro-CT can be valuable for spinal cord injury research by demonstrating accurate estimation of syrinx size and compares between micro-CT and traditional histological analysis. We used a post-traumatic syringomyelia rat model to compare micro-CT analysis to conventional histological analysis. The study showed that micro-CT can detect lesions within the spinal cord very similar to histology. Importantly, micro-CT appears to provide more accurate estimates of the lesions with more measures (e.g., surface area), can detect compounds within the cord, and can be done with the tissue of interest (spinal cord) intact. In summary, the experimental work presented here provides one of the first investigations of the use of micro-CT for estimating the size of intraparenchymal cysts and detecting materials within the spinal cord. All animal procedures were approved by the University of Akron Institutional Animal Care and Use Committee (IACUC) (protocol # LRE 16-05-09 approved on May 14, 2016).

4.
Ann Biomed Eng ; 47(3): 744-753, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30627839

RESUMO

A promising treatment strategy for spinal cord injury (SCI) is to reduce inhibition from chondroitin sulfate proteoglycans (CSPGs). For example, administering intracellular σ peptide (ISP) can improve the ability of axons to cross inhibitory CSPGs and improve function in rodent models of SCI. To translate such treatments into the clinic, we need robust and sensitive methods for studying rodent models. In this study, we applied a newly developed suite of quantitative gait analysis tools: gait analysis instrumentation and technology optimized for rodents (GAITOR), which consists of an arena and open-source software (AGATHA: automated gait analysis through hues and areas). We showed that GAITOR can be used to detect subtle functional improvements (measured by hindlimb duty factor imbalance) in rats following ISP administration in a T10 hemisection injury model. We demonstrated that SCI-specific parameters (right paw placement accuracy and phase dispersion) can be easily added to GAITOR to track recovery. We confirmed the gait observations via retrograde tracer uptake. We concluded that GAITOR is a powerful tool for measuring recovery after moderate/mild SCI, and could be used to replace expensive/inflexible commercially-available gait analysis techniques.


Assuntos
Análise da Marcha/métodos , Marcha/fisiologia , Traumatismos da Medula Espinal/fisiopatologia , Animais , Modelos Animais de Doenças , Feminino , Peptídeos/administração & dosagem , Ratos Endogâmicos F344 , Software , Medula Espinal/patologia , Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/patologia
5.
Gene ; 689: 235-245, 2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30572096

RESUMO

Groupers are coral fish species of prime ecological and economic significance. The interactions among them and other coral reefs organisms aid the healthiness and species balance in this fundamental marine niches. Also, groupers are among the top priced fisheries species. The Egyptian habitats of the Red Sea are lacking genetic studies that assess species diversity for the final goal of conservation and fisheries management. Moreover, morphological similarities among these organisms sometimes hinder a proper species identification. Hence, more accurate groupers authentication methods are crucially required. Sixteen grouper species belonging to the genera Epinephelus, Anyperodon, Cephaolopholes, Aethaloperca, Variola, and Plectropomus, present in the Red Sea in Egypt, were investigated for species authentication through mitochondrial DNA variations, applying cytochrome oxidase subunit I (COI) and 12srRNA genes sequencing. GenBank comparisons, phylogenetic analyses and comparisons of pairwise distances were carried out. All these analyses aimed to species authentication and identifying their relations at the international scale. The results exhibited >98% identity with E. fasciatus, A. rogaa, C. oligosticta, E. areolatus, V. louti, P. areolatus, E. malabaricus, C. sexmaculata, E. summana, E. chlorostigma, E. polyphekadion, C. miniataus, A. leucogrammicus, E. tauvina, C. argus, C. hemistiktos. Pairwise distances showed a clear increase upon raising comparison level from among species to among-genera. Combined 12srRNA and COI genes sequencing resulted in an accurate tool for Egyptian Red Sea grouper species unambiguous discrimination. This can provide vital aid to the active efforts for these species conservation and fisheries management in Egypt and the world.


Assuntos
Bass/classificação , Bass/genética , Conservação dos Recursos Naturais , DNA Mitocondrial/genética , Pesqueiros , Marcadores Genéticos , Animais , Conservação dos Recursos Naturais/métodos , Código de Barras de DNA Taxonômico/métodos , Egito , Pesqueiros/organização & administração , Pesqueiros/normas , Especiação Genética , Oceano Índico , Tipagem Molecular , Filogenia
6.
Adv Healthc Mater ; 5(7): 802-12, 2016 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-26913590

RESUMO

Spinal cord injury (SCI) causes permanent, often complete disruption of central nervous system (CNS) function below the damaged region, leaving patients without the ability to regenerate lost tissue. To engineer new CNS tissue, a unique spinal cord bridge is created to deliver stem cells and guide their organization and development with site-specifically immobilized growth factors. In this study, this bridge is tested, consisting of adult neural stem/progenitor cells contained within a methacrylamide chitosan (MAC) hydrogel and protected by a chitosan conduit. Interferon-γ (IFN-γ) and platelet-derived growth factor-AA (PDGF-AA) are recombinantly produced and tagged with an N-terminal biotin. They are immobilized to streptavidin-functionalized MAC to induce either neuronal or oligodendrocytic lineages, respectively. These bridges are tested in a rat hemisection model of SCI between T8 and T9. After eight weeks treatments including chitosan conduits result in a significant reduction in lesion area and macrophage infiltration around the lesion site (p < 0.0001). Importantly, neither immobilized IFN-γ nor PDGF-AA increased macrophage infiltration. Retrograde tracing demonstrates improved neuronal regeneration through the use of immobilized growth factors. Immunohistochemistry staining demonstrates that immobilized growth factors are effective in differentiating encapsulated cells into their anticipated lineages within the hydrogel, while qualitatively reducing glial fibrillary acid protein expression.


Assuntos
Hidrogel de Polietilenoglicol-Dimetacrilato/química , Proteínas Imobilizadas/uso terapêutico , Peptídeos e Proteínas de Sinalização Intercelular/uso terapêutico , Células-Tronco Neurais/transplante , Traumatismos da Medula Espinal/terapia , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Diferenciação Celular/efeitos dos fármacos , Cicatriz/patologia , Feminino , Proteínas Imobilizadas/farmacologia , Imunidade/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Atividade Motora/efeitos dos fármacos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/efeitos dos fármacos , Neuroglia/efeitos dos fármacos , Neuroglia/patologia , Ratos Endogâmicos F344 , Proteínas Recombinantes/uso terapêutico , Recuperação de Função Fisiológica/efeitos dos fármacos , Medula Espinal/efeitos dos fármacos , Medula Espinal/patologia , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/fisiopatologia , Estilbamidinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA