Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2573: 333-344, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36040607

RESUMO

Gene therapy based on recombinant adeno-associated viral (rAAV) vectors has recently made significant progress as a clinical therapeutic. Unlike most traditional medications, gene therapy vectors can be biologically active when shed into the surrounding environment. Here we describe methods for collection and storage of multiple biological specimen samples and a PCR-based method for detection of shed adeno-associated viral (AAV) particles. We also describe a method for use of an infectious replication assay utilizing a cell line stably expressing AAV Rep and Cap genes and superinfection with adenovirus 5 to detect functionality in shed AAV particles.


Assuntos
Dependovirus , Vetores Genéticos , Adenoviridae/genética , Adenoviridae/metabolismo , Linhagem Celular , Dependovirus/genética , Dependovirus/metabolismo , Terapia Genética , Vetores Genéticos/genética
2.
Int J Mol Sci ; 23(16)2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36012498

RESUMO

Sinoatrial node dysfunction can manifest as bradycardia, leading to symptoms of syncope and sudden cardiac death. Electronic pacemakers are the current standard of care but are limited due to a lack of biological chronotropic control, cost of revision surgeries, and risk of lead- and device-related complications. We therefore aimed to develop a biological alternative to electronic devices by using a clinically relevant gene therapy vector to demonstrate conversion of cardiomyocytes into sinoatrial node-like cells in an in vitro context. Neonatal rat ventricular myocytes were transduced with recombinant adeno-associated virus vector 6 encoding either hTBX18 or green fluorescent protein and maintained for 3 weeks. At the endpoint, qPCR, Western blot analysis and immunocytochemistry were used to assess for reprogramming into pacemaker cells. Cell morphology and Arclight action potentials were imaged via confocal microscopy. Compared to GFP, hTBX18-transduced cells showed that hTBX18, HCN4 and Cx45 were upregulated. Cx43 was significantly downregulated, while sarcomeric α-actinin remained unchanged. Cardiomyocytes transduced with hTBX18 acquired the tapering morphology of native pacemaker cells, as compared to the block-like, striated appearance of ventricular cardiomyocytes. Analysis of the action potentials showed phase 4 depolarization and a significant decrease in the APD50 of the hTBX18-transduced cells. We have demonstrated that rAAV-hTBX18 gene transfer to ventricular myocytes results in morphological, molecular, physiological, and functional changes, recapitulating the pacemaker phenotype in an in vitro setting. The generation of these induced pacemaker-like cells using a clinically relevant vector opens new prospects for biological pacemaker development.


Assuntos
Miócitos Cardíacos , Nó Sinoatrial , Potenciais de Ação , Animais , Relógios Biológicos/fisiologia , Dependovirus , Vetores Genéticos/genética , Miócitos Cardíacos/metabolismo , Ratos
3.
Viruses ; 14(8)2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35893689

RESUMO

Gene therapy is making significant impact on a modest, yet growing, number of human diseases. Justifiably, the preferred viral vector for clinical use is that based on recombinant adeno-associated virus (rAAV). There is a need to scale up rAAV vector production with the transition from pre-clinical models to human application. Standard production methods based on the adherent cell type (HEK293) are limited in scalability and other methods, such as those based on the baculovirus and non-adherent insect cell (Sf9) system, have been pursued as an alternative to increase rAAV production. In this study, we compare these two production methods for cardiotropic rAAVs. Transduction efficiency for both production methods was assessed in primary cardiomyocytes, human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), and in mice following systemic delivery. We found that the rAAV produced by the traditional HEK293 method out-performed vector produced using the baculovirus/Sf9 system in vitro and in vivo. This finding provides a potential caveat for vector function when using the baculovirus/Sf9 production system and underscores the need for thorough assessment of vector performance when using diverse rAAV production methods.


Assuntos
Células-Tronco Pluripotentes Induzidas , Animais , Baculoviridae/genética , Dependovirus/genética , Vetores Genéticos/genética , Células HEK293 , Humanos , Camundongos
4.
Clin Ther ; 42(10): 1911-1922, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32988632

RESUMO

PURPOSE: In the last decade, interest in gene therapy as a therapeutic technology has increased, largely driven by an exciting yet modest number of successful applications for monogenic diseases. Setbacks in the use of gene therapy for cardiac disease have motivated efforts to develop vectors with enhanced tropism for the heart and more efficient delivery methods. Although monogenic diseases are the logical target, cardiac arrhythmias represent a group of conditions amenable to gene therapy because of focal targets (biological pacemakers, nodal conduction, or stem cell-related arrhythmias) or bystander effects on cells not directly transduced because of electrical coupling. METHODS: This review provides a contemporary narrative of the field of gene therapy for experimental cardiac arrhythmias, including those associated with stem cell transplant. Recent articles published in the English language and available through the PubMed database and other prominent literature are discussed. FINDINGS: The promise of gene therapy has been realized for a handful of monogenic diseases and is actively being pursued for cardiac applications in preclinical models. With improved vectors, it is likely that cardiac disease will also benefit from this technology. Cardiac arrhythmias, whether inherited or acquired, are a group of conditions with a potentially lower threshold for phenotypic correction and as such hold unique potential as targets for cardiac gene therapy. IMPLICATIONS: There has been a proliferation of research on the potential of gene therapy for cardiac arrhythmias. This body of investigation forms a strong basis on which further developments, particularly with viral vectors, are likely to help this technology progress along its translational trajectory.


Assuntos
Arritmias Cardíacas/terapia , Terapia Baseada em Transplante de Células e Tecidos/métodos , Terapia Genética/métodos , Vetores Genéticos , Humanos
5.
Gene Ther ; 26(9): 399-406, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31467408

RESUMO

Differences between mouse and human hearts pose a significant limitation to the value of small animal models when predicting vector behavior following recombinant adeno-associated viral (rAAV) vector-mediated cardiac gene therapy. Hence, sheep have been adopted as a preclinical animal, as they better model the anatomy and cardiac physiological processes of humans. There is, however, no comprehensive data on the shedding profile of rAAV in sheep following intracoronary delivery, so as to understand biosafety risks in future preclinical and clinical applications. In this study, sheep received intracoronary delivery of rAAV serotypes 2/6 (2 × 1012 vg), 2/8, and 2/9 (1 × 1013 vg) at doses previously administered in preclinical and clinical trials. This was followed by assessment over 96 h to examine vector shedding in urine, feces, nasal mucus, and saliva samples. Vector genomes were detected via real-time quantitative PCR in urine and feces up to 48 and 72 h post vector delivery, respectively. Of these results, functional vector particles were only detected via a highly sensitive infectious replication assay in feces samples up to 48 h following vector delivery. We conclude that rAAV-mediated gene transfer into sheep hearts results in low-grade shedding of non-functional vector particles for all excreta samples, except in the case of feces, where functional vector particles are present up to 48 h following vector delivery. These results may be used to inform containment and decontamination guidelines for large animal dealings, and to understand the biosafety risks associated with future preclinical and clinical uses of rAAV.


Assuntos
Dependovirus/genética , Vetores Genéticos , Eliminação de Partículas Virais , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Cateterismo , Vasos Coronários , Dependovirus/imunologia , Dependovirus/fisiologia , Vetores Genéticos/administração & dosagem , Vetores Genéticos/imunologia , Células HeLa , Humanos , Injeções Intra-Arteriais , Masculino , Infecções por Parvoviridae/imunologia , Infecções por Parvoviridae/urina , Infecções por Parvoviridae/virologia , Reação em Cadeia da Polimerase em Tempo Real , Ovinos , Replicação Viral
6.
Sci Rep ; 9(1): 10579, 2019 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-31332256

RESUMO

We have previously reported a subpopulation of mesenchymal stromal cells (MSCs) within the platelet-derived growth factor receptor-alpha (PDGFRα)/CD90 co-expressing cardiac interstitial and adventitial cell fraction. Here we further characterise PDGFRα/CD90-expressing cardiac MSCs (PDGFRα + cMSCs) and use human telomerase reverse transcriptase (hTERT) over-expression to increase cMSCs ability to repair the heart after induced myocardial infarction. hTERT over-expression in PDGFRα + cardiac MSCs (hTERT + PDGFRα + cMSCs) modulates cell differentiation, proliferation, survival and angiogenesis related genes. In vivo, transplantation of hTERT + PDGFRα + cMSCs in athymic rats significantly increased left ventricular function, reduced scar size, increased angiogenesis and proliferation of both cardiomyocyte and non-myocyte cell fractions four weeks after myocardial infarction. In contrast, transplantation of mutant hTERT + PDGFRα + cMSCs (which generate catalytically-inactive telomerase) failed to replicate this cardiac functional improvement, indicating a telomerase-dependent mechanism. There was no hTERT + PDGFRα + cMSCs engraftment 14 days after transplantation indicating functional improvement occurred by paracrine mechanisms. Mass spectrometry on hTERT + PDGFRα + cMSCs conditioned media showed increased proteins associated with matrix modulation, angiogenesis, cell proliferation/survival/adhesion and innate immunity function. Our study shows that hTERT can activate pro-regenerative signalling within PDGFRα + cMSCs and enhance cardiac repair after myocardial infarction. An increased understanding of hTERT's role in mesenchymal stromal cells from various organs will favourably impact clinical regenerative and anti-cancer therapies.


Assuntos
Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/enzimologia , Infarto do Miocárdio/terapia , Miócitos Cardíacos/enzimologia , Telomerase/metabolismo , Animais , Criança , Humanos , Pessoa de Meia-Idade , Miócitos Cardíacos/transplante , Ratos , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo
7.
Artigo em Inglês | MEDLINE | ID: mdl-29038101

RESUMO

BACKGROUND: Recent studies have demonstrated that intramyocardial adipose tissue (IMAT) may contribute to ventricular electrophysiological remodeling in patients with chronic myocardial infarction. Using an ovine model of myocardial infarction, we aimed to determine the influence of IMAT on scar tissue identification during endocardial contact mapping and optimal voltage-based mapping criteria for defining IMAT dense regions. METHOD AND RESULTS: In 7 sheep, left ventricular endocardial and transmural mapping was performed 84 weeks (15-111 weeks) post-myocardial infarction. Spearman rank correlation coefficient was used to assess the relationship between endocardial contact electrogram amplitude and histological composition of myocardium. Receiver operator characteristic curves were used to derive optimal electrogram thresholds for IMAT delineation during endocardial mapping and to describe the use of endocardial mapping for delineation of IMAT dense regions within scar. Endocardial electrogram amplitude correlated significantly with IMAT (unipolar r=-0.48±0.12, P<0.001; bipolar r=-0.45±0.22, P=0.04) but not collagen (unipolar r=-0.36±0.24, P=0.13; bipolar r=-0.43±0.31, P=0.16). IMAT dense regions of myocardium reliably identified using endocardial mapping with thresholds of <3.7 and <0.6 mV, respectively, for unipolar, bipolar, and combined modalities (single modality area under the curve=0.80, P<0.001; combined modality area under the curve=0.84, P<0.001). Unipolar mapping using optimal thresholding remained significantly reliable (area under the curve=0.76, P<0.001) during mapping of IMAT, confined to putative scar border zones (bipolar amplitude, 0.5-1.5 mV). CONCLUSIONS: These novel findings enhance our understanding of the confounding influence of IMAT on endocardial scar mapping. Combined bipolar and unipolar voltage mapping using optimal thresholds may be useful for delineating IMAT dense regions of myocardium, in postinfarct cardiomyopathy.


Assuntos
Tecido Adiposo/patologia , Cicatriz/diagnóstico , Técnicas Eletrofisiológicas Cardíacas , Endocárdio/patologia , Infarto do Miocárdio/diagnóstico , Miocárdio/patologia , Potenciais de Ação , Animais , Área Sob a Curva , Biópsia , Cicatriz/metabolismo , Cicatriz/patologia , Cicatriz/fisiopatologia , Colágeno/metabolismo , Modelos Animais de Doenças , Endocárdio/metabolismo , Endocárdio/fisiopatologia , Frequência Cardíaca , Masculino , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miocárdio/metabolismo , Valor Preditivo dos Testes , Curva ROC , Reprodutibilidade dos Testes , Carneiro Doméstico , Processamento de Sinais Assistido por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA