Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Virol ; 96(4): e0186721, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-34878888

RESUMO

Common to all cytomegalovirus (CMV) genomes analyzed to date is the presence of G protein-coupled receptors (GPCR). Animal models of CMV provide insights into their role in viral fitness. The mouse cytomegalovirus (MCMV) GPCR, M33, facilitates dendritic cell (DC)-dependent viremia, the extravasation of blood-borne infected DCs to the salivary gland, and the frequency of reactivation events from latently infected tissue explants. Constitutive G protein-coupled M33 signaling is required for these phenotypes, although the contribution of distinct biochemical pathways activated by M33 is unknown. M33 engages Gq/11 to constitutively activate phospholipase C ß (PLCß) and downstream cyclic AMP response-element binding protein (CREB) in vitro. Identification of a MCMV M33 mutant (M33ΔC38) for which CREB signaling was disabled but PLCß activation was preserved provided the opportunity to investigate their relevance in vivo. Following intranasal infection with MCMV M33ΔC38, the absence of M33 CREB Gq/11-dependent signaling correlated with reduced mobilization of lytically-infected DCs to the draining lymph node high endothelial venules (HEVs) and reduced viremia compared with wild type MCMV. In contrast, M33ΔC38-infected DCs within the vascular compartment extravasated to the salivary glands via a pertussis toxin-sensitive, Gi/o-dependent, and CREB-independent mechanism. In the context of MCMV latency, spleen explants from M33ΔC38-infected mice were markedly attenuated for reactivation. Taken together, these data demonstrate that key features of the MCMV life cycle are coordinated in diverse tissues by distinct pathways of the M33 signaling repertoire. IMPORTANCE G protein-coupled receptors (GPCRs) act as cell surface molecular "switches" that regulate the cellular response to environmental stimuli. All cytomegalovirus (CMV) genomes analyzed to date possess GPCR homologs with phylogenetic evidence for independent gene capture events, signifying important in vivo roles. The mouse CMV (MCMV) GPCR homolog, designated M33, is important for cell-associated virus spread and the establishment and/or reactivation of latent MCMV infection. The signaling repertoire of M33 is distinct from cellular GPCRs and little is known of the relevance of component signaling pathways for in vivo M33 function. In this report, we showed that temporal and tissue-specific M33 signaling was required to facilitate in vivo infection. Understanding the relevance of the viral GPCR signaling profiles for in vivo function will provide opportunities for future targeted interventions.


Assuntos
Infecções por Herpesviridae/virologia , Muromegalovirus/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Virais/metabolismo , Animais , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Células Dendríticas/virologia , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Infecções por Herpesviridae/metabolismo , Linfonodos/virologia , Camundongos , Camundongos Endogâmicos BALB C , Muromegalovirus/genética , Muromegalovirus/metabolismo , Mutação , Fosfolipase C beta/metabolismo , Receptores Acoplados a Proteínas G/genética , Glândulas Salivares/virologia , Transdução de Sinais , Proteínas Virais/genética , Viremia/metabolismo , Viremia/virologia , Ativação Viral/genética
2.
J Virol ; 93(3)2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30404805

RESUMO

Cytomegaloviruses (CMVs) establish systemic infections across diverse cell types. Glycoproteins that alter tropism can potentially guide their spread. Glycoprotein O (gO) is a nonessential fusion complex component of both human CMV (HCMV) and murine CMV (MCMV). We tested its contribution to MCMV spread from the respiratory tract. In vitro, MCMV lacking gO poorly infected fibroblasts and epithelial cells. Cell binding was intact, but penetration was delayed. In contrast, myeloid infection was preserved, and in the lungs, where myeloid and type 2 alveolar epithelial cells are the main viral targets, MCMV lacking gO showed a marked preference for myeloid infection. Its poor epithelial cell infection was associated with poor primary virus production and reduced virulence. Systemic spread, which proceeds via infected CD11c+ myeloid cells, was initially intact but then diminished, because less epithelial infection led ultimately to less myeloid infection. Thus, the tight linkage between peripheral and systemic MCMV infections gave gO-dependent infection a central role in host colonization.IMPORTANCE Human cytomegalovirus is a leading cause of congenital disease. This reflects its capacity for systemic spread. A vaccine is needed, but the best viral targets are unclear. Attention has focused on the virion membrane fusion complex. It has 2 forms, so we need to know what each contributes to host colonization. One includes the virion glycoprotein O. We used murine cytomegalovirus, which has equivalent fusion complexes, to determine the importance of glycoprotein O after mucosal infection. We show that it drives local virus replication in epithelial cells. It was not required to infect myeloid cells, which establish systemic infection, but poor local replication reduced systemic spread as a secondary effect. Therefore, targeting glycoprotein O of human cytomegalovirus has the potential to reduce both local and systemic infections.


Assuntos
Células Epiteliais/virologia , Fibroblastos/virologia , Infecções por Herpesviridae/virologia , Pulmão/virologia , Glicoproteínas de Membrana/metabolismo , Muromegalovirus/patogenicidade , Proteínas do Envelope Viral/metabolismo , Replicação Viral , Animais , Células Cultivadas , Células Epiteliais/metabolismo , Fibroblastos/metabolismo , Infecções por Herpesviridae/metabolismo , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Internalização do Vírus
3.
mBio ; 8(5)2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28974616

RESUMO

Herpesviruses have coevolved with their hosts over hundreds of millions of years and exploit fundamental features of their biology. Cytomegaloviruses (CMVs) colonize blood-borne myeloid cells, and it has been hypothesized that systemic dissemination arises from infected stem cells in bone marrow. However, poor CMV transfer by stem cell transplantation argues against this being the main reservoir. To identify alternative pathways for CMV spread, we tracked murine CMV (MCMV) colonization after mucosal entry. We show that following intranasal MCMV infection, lung CD11c+ dendritic cells (DC) migrated sequentially to lymph nodes (LN), blood, and then salivary glands. Replication-deficient virus followed the same route, and thus, DC infected peripherally traversed LN to enter the blood. Given that DC are thought to die locally following their arrival and integration into LN, recirculation into blood represents a new pathway. We examined host and viral factors that facilitated this LN traverse. We show that MCMV-infected DC exited LN by a distinct route to lymphocytes, entering high endothelial venules and bypassing the efferent lymph. LN exit required CD44 and the viral M33 chemokine receptor, without which infected DC accumulated in LN and systemic spread was greatly reduced. Taken together, our studies provide the first demonstration of virus-driven DC recirculation. As viruses follow host-defined pathways, high endothelial venules may normally allow DC to pass from LN back into blood.IMPORTANCE Human cytomegalovirus (HCMV) causes devastating disease in the unborn fetus and in the immunocompromised. There is no licensed vaccine, and preventive measures are impeded by our poor understanding of early events in host colonization. HCMV and murine CMV (MCMV) both infect blood-borne myeloid cells. HCMV-infected blood cells are thought to derive from infected bone marrow stem cells. However, infected stem cells have not been visualized in vivo nor shown to produce virus ex vivo, and hematopoietic transplants poorly transfer infection. We show that MCMV-infected dendritic cells in the lungs reach the blood via lymph nodes, surprisingly migrating into high endothelial venules. Dissemination did not require viral replication. It depended on the constitutively active viral chemokine receptor M33 and on the host hyaluronan receptor CD44. Thus, viral chemokine receptors are a possible target to limit systemic CMV infections.


Assuntos
Células Dendríticas/virologia , Muromegalovirus/fisiologia , Animais , Células Dendríticas/fisiologia , Infecções por Herpesviridae/sangue , Infecções por Herpesviridae/virologia , Interações Hospedeiro-Patógeno , Humanos , Pulmão/imunologia , Pulmão/virologia , Linfonodos/imunologia , Linfonodos/virologia , Camundongos , Camundongos Endogâmicos BALB C , Receptores de Quimiocinas/metabolismo , Glândulas Salivares/imunologia , Glândulas Salivares/virologia , Viremia , Replicação Viral
4.
PLoS Pathog ; 12(12): e1006069, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27926941

RESUMO

Cytomegaloviruses (CMVs) establish chronic, systemic infections. Peripheral infection spreads via lymph nodes, which are also a focus of host defence. Thus, this is a point at which systemic infection spread might be restricted. Subcapsular sinus macrophages (SSM) captured murine CMV (MCMV) from the afferent lymph and poorly supported its replication. Blocking the type I interferon (IFN-I) receptor (IFNAR) increased MCMV infection of SSM and of the fibroblastic reticular cells (FRC) lining the subcapsular sinus, and accelerated viral spread to the spleen. Little splenic virus derived from SSM, arguing that they mainly induce an anti-viral state in the otherwise susceptible FRC. NK cells also limited infection, killing infected FRC and causing tissue damage. They acted independently of IFN-I, as IFNAR blockade increased NK cell recruitment, and NK cell depletion increased infection in IFNAR-blocked mice. Thus SSM restricted MCMV infection primarily though IFN-I, with NK cells providing a second line of defence. The capacity of innate immunity to restrict MCMV escape from the subcapsular sinus suggested that enhancing its recruitment might improve infection control.


Assuntos
Infecções por Herpesviridae/imunologia , Imunidade Inata/imunologia , Interferon Tipo I/imunologia , Células Matadoras Naturais/imunologia , Linfonodos/imunologia , Animais , Linfonodos/virologia , Macrófagos/virologia , Camundongos , Muromegalovirus/imunologia
5.
J Virol ; 89(14): 7147-58, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25926638

RESUMO

UNLABELLED: Cytomegaloviruses (CMVs) establish chronic infections that spread from a primary entry site to secondary vascular sites, such as the spleen, and then to tertiary shedding sites, such as the salivary glands. Human CMV (HCMV) is difficult to analyze, because its spread precedes clinical presentation. Murine CMV (MCMV) offers a tractable model. It is hypothesized to spread from peripheral sites via vascular endothelial cells and associated monocytes. However, viral luciferase imaging showed footpad-inoculated MCMV first reaching the popliteal lymph nodes (PLN). PLN colonization was rapid and further spread was slow, implying that LN infection can be a significant bottleneck. Most acutely infected PLN cells were CD169(+) subcapsular sinus macrophages (SSM). Replication-deficient MCMV also reached them, indicating direct infection. Many SSM expressed viral reporter genes, but few expressed lytic genes. SSM expressed CD11c, and MCMV with a cre-sensitive fluorochrome switch showed switched infected cells in PLN of CD11c-cre mice but yielded little switched virus. SSM depletion with liposomal clodronate or via a CD169-diphtheria toxin receptor transgene shifted infection to ER-TR7(+) stromal cells, increased virus production, and accelerated its spread to the spleen. Therefore, MCMV disseminated via LN, and SSM slowed this spread by shielding permissive fibroblasts and poorly supporting viral lytic replication. IMPORTANCE: HCMV chronically infects most people, and it can cause congenital disability and harm the immunocompromised. A major goal of vaccination is to prevent systemic infection. How this is established is unclear. Restriction to humans makes HCMV difficult to analyze. We show that peripheral MCMV infection spreads via lymph nodes. Here, MCMV infected filtering macrophages, which supported virus replication poorly. When these macrophages were depleted, MCMV infected susceptible fibroblasts and spread faster. The capacity of filtering macrophages to limit MCMV spread argued that their infection is an important bottleneck in host colonization and might be a good vaccine target.


Assuntos
Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/virologia , Linfonodos/imunologia , Linfonodos/virologia , Macrófagos/imunologia , Macrófagos/virologia , Muromegalovirus/imunologia , Animais , Modelos Animais de Doenças , Procedimentos de Redução de Leucócitos , Camundongos , Glândulas Salivares/virologia , Baço/virologia
6.
J Virol ; 90(6): 2756-66, 2015 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-26719275

RESUMO

UNLABELLED: Cytomegaloviruses (CMVs) infect the lungs and cause pathological damage there in immunocompromised hosts. How lung infection starts is unknown. Inhaled murine CMV (MCMV) directly infected alveolar macrophages (AMs) and type 2 alveolar epithelial cells (AEC2s) but not type 1 alveolar epithelial cells (AEC1s). In contrast, herpes simplex virus 1 infected AEC1s and murid herpesvirus 4 (MuHV-4) infected AEC1s via AMs. MCMV-infected AMs prominently expressed viral reporter genes from a human CMV IE1 promoter; but most IE1-positive cells were AEC2s, and CD11c-cre mice, which express cre in AMs, switched the fluorochrome expression of <5% of floxed MCMV in the lungs. In contrast, CD11C-cre mice exhibited fluorochrome switching in >90% of floxed MuHV-4 in the lungs and 50% of floxed MCMV in the blood. AM depletion increased MCMV titers in the lung during the acute phase of infection. Thus, the influence of AMs was more restrictive than permissive. Circulating monocytes entered infected lungs in large numbers and became infected, but not directly; infection occurred mainly via AEC2s. Mice infected with an MCMV mutant lacking its m131/m129 chemokine homolog, which promotes macrophage infection, showed levels of lung infection equivalent to those of wild-type MCMV-infected mice. The level of lung infiltration by Gr-1-positive cells infected with the MCMV m131/m129-null mutant was modestly different from that for wild-type MCMV-infected lungs. These results are consistent with myeloid cells mainly disseminating MCMV from the lungs, whereas AEC2s provide local amplification. IMPORTANCE: Cytomegaloviruses (CMVs) chronically and systemically infect most mammals. Human CMV infection is usually asymptomatic but causes lung disease in people with poor immune function. As human infection is hard to analyze, studies with related animal viruses provide important insights. We show that murine CMV has two targets in the lungs: macrophages and surfactant-secreting epithelial cells. Acute virus replication occurred largely in epithelial cells. Macrophages had an important defensive role, as their removal increased the level of infection. These results establish the dual nature of lung infection, with local virus replication occurring in epithelial cells and spread occurring via quiescently infected macrophages. Distinct therapies may be needed to target these contrasting events.


Assuntos
Pulmão/virologia , Macrófagos Alveolares/virologia , Muromegalovirus/fisiologia , Animais , Células Epiteliais/virologia , Herpesvirus Humano 1/fisiologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Rhadinovirus/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA