Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(5): e0303470, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38771847

RESUMO

VDX-111 (also identified as AMPI-109) is a vitamin D derivative which has shown anticancer activity. To further assess the function of this compound against multiple cancer types, we examined the efficacy of VDX-111 against a panel of 30 well characterized canine cancer cell lines. Across a variety of cancer types, VDX-111 induced widely variable growth inhibition, cell death, and migration inhibition, at concentrations ranging from 10 nM to 1 µM. Growth inhibition sensitivity did not correlate strongly with tumor cell histotype; however, it was significantly correlated with the expression of genes in multiple cell signaling pathways, including the MAPK and PI3K-AKT pathways. We confirmed inhibition of these signaling pathways as likely participants in the effects of VDX-111. These results suggest that a subset of canine tumors may be sensitive to treatment with VDX-111, and suggests possible predictive markers of drug sensitivity and pharmacodynamic biomarkers of drug exposure that could be employed in future clinical trials.


Assuntos
Antineoplásicos , Proliferação de Células , Transdução de Sinais , Cães , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Movimento Celular/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Doenças do Cão/tratamento farmacológico , Doenças do Cão/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Vitamina D/farmacologia
2.
J Pharmacol Exp Ther ; 388(3): 774-787, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38135509

RESUMO

This study provides a unique translational research opportunity to help both humans and dogs diagnosed with diseases that carry dismal prognoses in both species: histiocytic sarcoma (HS), hemangiosarcoma (HSA), and disseminated mastocytosis/mast cell tumor (MCT). Although exceedingly rare in humans, these so called "orphan diseases" are relatively more common in dogs. For these and other more commonplace cancers like lymphoma (Lym), dogs are an excellent translational model for human disease due to remarkably similar disease biology. In this study, assays were performed to assess the therapeutic potential of parthenolide (PTL), a known canonical nuclear factor kappa B (NF-κB) signaling inhibitor with additional mechanisms of antineoplastic activity, including alteration of cellular reduction-oxidation balance. Canine cell lines and primary cells are sensitive to PTL and undergo dose-dependent apoptosis after exposure to drug. PTL exposure also leads to glutathione depletion, reactive oxygen species generation, and NF-κB inhibition in canine cells. Standard-of-care therapeutics broadly synergize with PTL. In two canine HS cell lines, expression of NF-κB pathway signaling partners is downregulated with PTL therapy. Preliminary data suggest that PTL inhibits NF-κB activity of cells and extends survival time in a mouse model of disseminated canine HS. These data support further investigation of compounds that can antagonize canonical NF-κB pathway signaling in these cancers and pave the way for clinical trials of PTL in affected dogs. As dogs are an excellent natural disease model for these cancers, these data will ultimately improve our understanding of their human disease counterparts and hopefully improve care for both species. SIGNIFICANCE STATEMENT: Disseminated neoplasms in human and canine cancers are challenging to treat, and novel therapeutic approaches are needed to improve outcomes. Parthenolide is a promising treatment for histiocytic sarcoma, hemangiosarcoma, and mast cell neoplasia.


Assuntos
Hemangiossarcoma , Sarcoma Histiocítico , Sesquiterpenos , Camundongos , Humanos , Animais , Cães , NF-kappa B/metabolismo , Linhagem Celular Tumoral , Sarcoma Histiocítico/tratamento farmacológico , Hemangiossarcoma/tratamento farmacológico , Sesquiterpenos/farmacologia , Sesquiterpenos/uso terapêutico , Apoptose
3.
Bioconjug Chem ; 32(12): 2530-2539, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34779607

RESUMO

Patients with cancer-induced bone disease, including primary bone cancers such as osteosarcoma (OS) and metastases from other tissues of origin, present a high unmet medical need. We present a potential therapeutic approach built upon a proven bone-targeting bisphosphonate conjugate platform with the known synergies of gemcitabine (GEM) and docetaxel (DTX). The synthesis of rationally designed GEM-IB, the conjugate of GEM-5'-phosphate with ibandronate (IB), is presented. GEM-IB as a single agent or in combination with DTX demonstrated reduced tumor burden, preservation of the bone architecture, and improved the survival in a murine model of OS. This is the first demonstration of a bone-targeting conjugate in combination with a second drug to create effective drug ratios in the bone compartment.


Assuntos
Docetaxel
4.
Bone Rep ; 9: 47-60, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29992180

RESUMO

Bones provide essential functions and are sites of unique biochemistry and specialized cells, but can also be sites of disease. The treatment of bone disorders and neoplasia has presented difficulties in the past, and improved delivery of drugs to bone remains an important goal for achieving effective treatments. Drug targeting strategies have improved drug localization to bone by taking advantage of the high mineral concentration unique to the bone hydroxyapatite matrix, as well as tissue-specific cell types. The bisphosphonate molecule class binds specifically to hydroxyapatite and inhibits osteoclast resorption of bone, providing direct treatment for degenerative bone disorders, and as emerging evidence suggests, cancer. These bone-binding molecules also provide the opportunity to deliver other drugs specifically to bone by bisphosphonate conjugation. Bisphosphonate bone-targeted therapies have been successful in treatment of osteoporosis, primary and metastatic neoplasms of the bone, and other bone disorders, as well as refining bone imaging. In this review, we focus upon the use of bisphosphonate conjugates with antineoplastic agents, and overview bisphosphonate based imaging agents, nanoparticles, and other drugs. We also discuss linker design potential and the current state of bisphosphonate conjugate research progress. Ongoing investigations continue to expand the possibilities for bone-targeted therapeutics and for extending their reach into clinical practice.

5.
J Cell Biol ; 216(8): 2565-2580, 2017 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-28706108

RESUMO

Clathrin- and actin-mediated endocytosis is essential in eukaryotic cells. In this study, we demonstrate that Tda2 is a novel protein of the endocytic machinery necessary for normal internalization of native cargo in yeast. Tda2 has not been classified in any protein family. Unexpectedly, solving the crystal structure of Tda2 revealed it belongs to the dynein light chain family. However, Tda2 works independently of the dynein motor complex and microtubules. Tda2 forms a tight complex with the polyproline motif-rich protein Aim21, which interacts physically with the SH3 domain of the Arp2/3 complex regulator Bbc1. The Tda2-Aim21 complex localizes to endocytic sites in a Bbc1- and filamentous actin-dependent manner. Importantly, the Tda2-Aim21 complex interacts directly with and facilitates the recruitment of actin-capping protein, revealing barbed-end filament capping at endocytic sites to be a regulated event. Thus, we have uncovered a new layer of regulation of the actin cytoskeleton by a member of a conserved protein family that has not been previously associated with a function in endocytosis.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Vesículas Revestidas por Clatrina/metabolismo , Dineínas/metabolismo , Endocitose , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Capeamento de Actina/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/genética , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Dineínas/química , Complexo de Proteínas da Cadeia de Transporte de Elétrons/genética , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Genótipo , Cinética , Microscopia de Fluorescência , Microscopia de Vídeo , Modelos Moleculares , Mutação , Fenótipo , Ligação Proteica , Conformação Proteica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA