Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Hyperthermia ; 34(6): 731-743, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29278946

RESUMO

PURPOSE: This study validates that phase aberrations in breast magnetic resonance-guided focussed ultrasound (MRgFUS) therapies can be corrected in a clinically relevant time frame to generate more intense, smaller and more spatially accurate foci. MATERIALS AND METHODS: Hybrid angular spectrum (HAS) ultrasound calculations in an magnetic resonance imaging (MRI)-based tissue model, were used to compute phase aberration corrections for improved experimental MRgFUS heating in four heterogeneous breast-mimicking phantoms (n = 18 total locations). Magnetic resonance(MR) temperature imaging was used to evaluate the maximum temperature rise, focus volume and focus accuracy for uncorrected and phase aberration-corrected sonications. Thermal simulations assessed the effectiveness of the phase aberration correction implementation. RESULTS: In 13 of 18 locations, the maximum temperature rise increased by an average of 30%, focus volume was reduced by 40% and focus accuracy improved from 4.6 to 3.6 mm. Mixed results were observed in five of the 18 locations, with focus accuracy improving from 6.1 to 2.5 mm and the maximum temperature rise decreasing by 8% and focus volume increasing by 10%. Overall, the study demonstrated significant improvements (p < 0.005) in maximum temperature rise, focus volume and focus accuracy. Simulations predicted greater improvements than observed experimentally, suggesting potential for improvement in implementing the technique. The complete phase aberration correction procedure, including model generation, segmentation and phase aberration computations, required less than 45 min per sonication location. CONCLUSION: The significant improvements demonstrated in this study i.e., focus intensity, size and accuracy from phase aberration correction have the potential to improve the efficacy, time-efficiency and safety of breast MRgFUS therapies.


Assuntos
Mama/diagnóstico por imagem , Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Imageamento por Ressonância Magnética/métodos , Ultrassonografia/métodos , Feminino , Humanos
2.
Med Phys ; 43(3): 1374-84, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26936722

RESUMO

PURPOSE: This simulation study evaluates the effects of phase aberration in breast MR-guided focused ultrasound (MRgFUS) ablation treatments performed with a phased-array transducer positioned laterally to the breast. A quantification of these effects in terms of thermal dose delivery and the potential benefits of phase correction is demonstrated in four heterogeneous breast numerical models. METHODS: To evaluate the effects of varying breast tissue properties on the quality of the focus, four female volunteers with confirmed benign fibroadenomas were imaged using 3T MRI. These images were segmented into numerical models with six tissue types, with each tissue type assigned standard acoustic properties from the literature. Simulations for a single-plane 16-point raster-scan treatment trajectory centered in a fibroadenoma in each modeled breast were performed for a breast-specific MRgFUS system. At each of the 16 points, pressure patterns both with and without applying a phase correction technique were determined with the hybrid-angular spectrum method. Corrected phase patterns were obtained using a simulation-based phase aberration correction technique to adjust each element's transmit phase to obtain maximized constructive interference at the desired focus. Thermal simulations were performed for both the corrected and uncorrected pressure patterns using a finite-difference implementation of the Pennes bioheat equation. The effect of phase correction was evaluated through comparison of thermal dose accumulation both within and outside a defined treatment volume. Treatment results using corrected and uncorrected phase aberration simulations were compared by evaluating the power required to achieve a 20 °C temperature rise at the first treatment location. The extent of the volumes that received a minimum thermal dose of 240 CEM at 43 °C inside the intended treatment volume as well as the volume in the remaining breast tissues was also evaluated in the form of a dose volume ratio (DVR), a DVR percent change between corrected and uncorrected phases, and an additional metric that measured phase spread. RESULTS: With phase aberration correction applied, there was an improvement in the focus for all breast anatomies as quantified by a reduction in power required (13%-102%) to reach 20 °C when compared to uncorrected simulations. Also, the DVR percent change increased by 5%-77% in seven out of eight cases, indicating an improvement to the treatment as measured by a reduction in thermal dose deposited to the nontreatment tissues. Breast compositions with a higher degree of heterogeneity along the ultrasound beam path showed greater reductions in thermal dose delivered outside of the treatment volume with correction applied than beam trajectories that propagated through more homogeneous breast compositions. An increasing linear trend was observed between the DVR percent change and the phase-spread metric (R(2) = 0.68). CONCLUSIONS: These results indicate that performing phase aberration correction for breast MRgFUS treatments is beneficial for the small-aperture transducer (14.4 × 9.8 cm) evaluated in this work. While all breast anatomies could benefit from phase aberration correction, greater benefits are observed in more heterogeneous anatomies.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/cirurgia , Ablação por Ultrassom Focalizado de Alta Intensidade , Imageamento por Ressonância Magnética , Modelos Biológicos , Cirurgia Assistida por Computador , Feminino , Fibroadenoma/diagnóstico por imagem , Fibroadenoma/cirurgia , Humanos
3.
Magn Reson Med ; 76(3): 803-13, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26445135

RESUMO

PURPOSE: MR guided focused ultrasound procedures require accurate focal spot localization in three dimensions. This study presents a three-dimensional (3D) pulse sequence for acoustic radiation force imaging (ARFI) that efficiently localizes the focal spot by means of ultrasound induced tissue displacement over a large field-of-view. METHODS: A novel unbalanced bipolar motion encoding gradient was implemented to maximize time available for motion encoding, reduce echo times, and allow for longer echo train lengths. Two advanced features, kz reduction factor (KZRF) and kz -level interleaving, were implemented to reduce tissue heating. Studies in gelatin phantoms compared the location of peak displacement and temperature measured by 3D MR thermometry. MR-ARFI induced tissue heating was evaluated through a parametric study of sequence parameters and MR thermometry measurements during repeated application of ARFI sonication patterns. Sequence performance was characterized in the presence of respiration and tissue inhomogeneity. RESULTS: The location of peak displacement and temperature rise agreed within 0.2 ± 0.1 mm and 0.5 ± 0.3 mm in the transverse and longitudinal direction, respectively. The 3D displacement maps were acquired safely, and the KZRF and kz -level interleaving features reduced tissue heating by 51%. High quality displacement maps were obtained despite respiration and tissue inhomogeneities. CONCLUSION: This sequence provides a safe, accurate, and simple approach to localizing the focal spot in three dimensions with a single scan. Magn Reson Med 76:803-813, 2016. © 2015 Wiley Periodicals, Inc.


Assuntos
Algoritmos , Técnicas de Imagem por Elasticidade/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Processamento de Sinais Assistido por Computador , Cadáver , Feminino , Humanos , Aumento da Imagem/métodos , Movimento (Física) , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
4.
Med Phys ; 42(2): 674-84, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25652481

RESUMO

PURPOSE: In magnetic resonance-guided focused ultrasound (MRgFUS) therapies, the in situ characterization of the focal spot location and quality is critical. MR acoustic radiation force imaging (MR-ARFI) is a technique that measures the tissue displacement caused by the radiation force exerted by the ultrasound beam. This work presents a new technique to model the displacements caused by the radiation force of an ultrasound beam in a homogeneous tissue model. METHODS: When a steady-state point-source force acts internally in an infinite homogeneous medium, the displacement of the material in all directions is given by the Somigliana elastostatic tensor. The radiation force field, which is caused by absorption and reflection of the incident ultrasound intensity pattern, will be spatially distributed, and the tensor formulation takes the form of a convolution of a 3D Green's function with the force field. The dynamic accumulation of MR phase during the ultrasound pulse can be theoretically accounted for through a time-of-arrival weighting of the Green's function. This theoretical model was evaluated experimentally in gelatin phantoms of varied stiffness (125-, 175-, and 250-bloom). The acoustic and mechanical properties of the phantoms used as parameters of the model were measured using independent techniques. Displacements at focal depths of 30- and 45-mm in the phantoms were measured by a 3D spin echo MR-ARFI segmented-EPI sequence. RESULTS: The simulated displacements agreed with the MR-ARFI measured displacements for all bloom values and focal depths with a normalized RMS difference of 0.055 (range 0.028-0.12). The displacement magnitude decreased and the displacement pattern broadened with increased bloom value for both focal depths, as predicted by the theory. CONCLUSIONS: A new technique that models the displacements caused by the radiation force of an ultrasound beam in a homogeneous tissue model theory has been rigorously validated through comparison with experimentally obtained 3D displacement data in homogeneous gelatin phantoms using a 3D MR-ARFI sequence. The agreement of the experimentally measured and simulated results demonstrates the potential to use MR-ARFI displacement data in MRgFUS therapies.


Assuntos
Acústica , Imageamento Tridimensional/métodos , Fenômenos Magnéticos , Modelos Teóricos , Imagens de Fantasmas
5.
J Ther Ultrasound ; 2: 19, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25343028

RESUMO

BACKGROUND: Current clinical targets for transcranial magnetic resonance-guided focused ultrasound (tcMRgFUS) are all located close to the geometric center of the skull convexity, which minimizes challenges related to focusing the ultrasound through the skull bone. Non-central targets will have to be reached to treat a wider variety of neurological disorders and solid tumors. Treatment envelope studies utilizing two-dimensional (2D) magnetic resonance (MR) thermometry have previously been performed to determine the regions in which therapeutic levels of FUS can currently be delivered. Since 2D MR thermometry was used, very limited information about unintended heating in near-field tissue/bone interfaces could be deduced. METHODS: In this paper, we present a proof-of-concept treatment envelope study with three-dimensional (3D) MR thermometry monitoring of FUS heatings performed in a phantom and a lamb model. While the moderate-sized transducer used was not designed for transcranial geometries, the 3D temperature maps enable monitoring of the entire sonication field of view, including both the focal spot and near-field tissue/bone interfaces, for full characterization of all heating that may occur. 3D MR thermometry is achieved by a combination of k-space subsampling and a previously described temporally constrained reconstruction method. RESULTS: We present two different types of treatment envelopes. The first is based only on the focal spot heating-the type that can be derived from 2D MR thermometry. The second type is based on the relative near-field heating and is calculated as the ratio between the focal spot heating and the near-field heating. This utilizes the full 3D MR thermometry data achieved in this study. CONCLUSIONS: It is shown that 3D MR thermometry can be used to improve the safety assessment in treatment envelope evaluations. Using a non-optimal transducer, it is shown that some regions where therapeutic levels of FUS can be delivered, as suggested by the first type of envelope, are not necessarily safely treated due to the amount of unintended near-field heating occurring. The results presented in this study highlight the need for 3D MR thermometry in tcMRgFUS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA