Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Neural Transm (Vienna) ; 114(7): 899-908, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17318306

RESUMO

Induction of Fos protein by the potent and direct NMDA agonist (tetrazol-5-yl)glycine (TZG) was examined in mice. Effects of antipsychotic drugs were assessed on this in vivo index of NMDA receptor activation. TZG induced the expression of Fos in a neuroanatomically selective manner, with the hippocampal formation showing the most robust response. In mice genetically altered to express low levels of the NR1 subunit of the NMDA receptor, TZG-induced Fos was reduced markedly in comparison to the wild type controls. TZG-induced Fos was also blocked by the selective NMDA antagonist MK-801. Pretreatment of mice with clozapine (3 and 10 mg/kg) reduced TZG-induced Fos in the hippocampal formation but not in other brain regions. Haloperidol at a dose of 0.5 mg/kg did not antagonize TZG induced Fos in any region. Haloperidol at a dose of 1.0 mg/kg did attenuate the induction of Fos by TZG in the hippocampus but not in other brain regions. The relatively high dose (1 mg/kg) of haloperidol required to block effects of TZG suggests that this action may not be related to the D(2) dopamine receptor-blocking properties, since maximal D(2) receptor blockade was probably achieved by the 0.5 mg/kg dose of haloperidol. The antidepressant drug imipramine (10 or 20 mg/kg) did not antagonize TZG induced Fos in any brain region. The data suggest that clozapine can reduce excessive activation of NMDA receptors by TZG administration in vivo at doses relevant to the drugs' actions in rodent models of antipsychotic activity. Whether or not this action of clozapine contributes to its therapeutic properties will require further study.


Assuntos
Clozapina/farmacologia , Glicina/análogos & derivados , Haloperidol/farmacologia , N-Metilaspartato/agonistas , Proteínas Proto-Oncogênicas c-fos/biossíntese , Receptores de N-Metil-D-Aspartato/metabolismo , Tetrazóis/farmacologia , Animais , Glicina/farmacologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Knockout , Camundongos Transgênicos , Proteínas Proto-Oncogênicas c-fos/genética , Receptores de Glutamato Metabotrópico/deficiência , Receptores de Glutamato Metabotrópico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA