Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Ther Methods Clin Dev ; 30: 30-47, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37746247

RESUMO

Duchenne muscular dystrophy (DMD) is an X-linked disease caused by loss-of-function mutations in the dystrophin gene and is characterized by muscle wasting and early mortality. Adeno-associated virus-mediated gene therapy is being investigated as a treatment for DMD. In the nonclinical study documented here, we determined the effective dose of fordadistrogene movaparvovec, a clinical candidate adeno-associated virus serotype 9 vector carrying a human mini-dystrophin transgene, after single intravenous injection in a dystrophin-deficient (DMDmdx) rat model of DMD. Overall, we found that transduction efficiency, number of muscle fibers expressing the human mini-dystrophin polypeptide, improvement of the skeletal and cardiac muscle tissue architecture, correction of muscle strength and fatigability, and improvement of diastolic and systolic cardiac function were directly correlated with the amount of vector administered. The effective dose was then tested in older DMDmdx rats with a more dystrophic phenotype similar to the pathology observed in older patients with DMD. Except for a less complete rescue of muscle function in the oldest cohort, fordadistrogene movaparvovec was also found to be therapeutically effective in older DMDmdx rats, suggesting that this product may be appropriate for evaluation in patients with DMD at all stages of disease.

2.
Gene Ther ; 29(10-11): 608-615, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-34737451

RESUMO

Duchenne muscular dystrophy (DMD) is a lethal, degenerative muscle disorder caused by mutations in the DMD gene, leading to severe reduction or absence of the protein dystrophin. Gene therapy strategies that aim to increase expression of a functional dystrophin protein (mini-dystrophin) are under investigation. The ability to accurately quantify dystrophin/mini-dystrophin is essential in assessing the level of gene transduction. We demonstrated the validation and application of a novel peptide immunoaffinity liquid chromatography-tandem mass spectrometry (IA-LC-MS/MS) assay. Data showed that dystrophin expression in Becker muscular dystrophy and DMD tissues, normalized against the mean of non-dystrophic control tissues (n = 20), was 4-84.5% (mean 32%, n = 20) and 0.4-24.1% (mean 5%, n = 20), respectively. In a DMD rat model, biceps femoris tissue from dystrophin-deficient rats treated with AAV9.hCK.Hopti-Dys3978.spA, an adeno-associated virus vector containing a mini-dystrophin transgene, showed a dose-dependent increase in mini-dystrophin expression at 6 months post-dose, exceeding wildtype dystrophin levels at high doses. Validation data showed that inter- and intra-assay precision were ≤20% (≤25% at the lower limit of quantification [LLOQ]) and inter- and intra-run relative error was within ±20% (±25% at LLOQ). IA-LC-MS/MS accurately quantifies dystrophin/mini-dystrophin in human and preclinical species with sufficient sensitivity for immediate application in preclinical/clinical trials.


Assuntos
Distrofina , Distrofia Muscular de Duchenne , Humanos , Ratos , Animais , Distrofina/genética , Distrofina/metabolismo , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Cromatografia Líquida , Espectrometria de Massas em Tandem , Músculo Esquelético/metabolismo , Terapia Genética/métodos
3.
Sci Rep ; 8(1): 7781, 2018 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-29773891

RESUMO

Osteopontin is a secreted glycophosphoprotein that is highly implicated in many physiological and pathological processes such as biomineralization, cell-mediated immunity, inflammation, fibrosis, cell survival, tumorigenesis and metastasis. Antibodies against osteopontin have been actively pursued as potential therapeutics for various diseases by pharmaceutical companies and academic laboratories. Many studies have demonstrated the efficacy of osteopontin inhibition in a variety of preclinical models of diseases such as rheumatoid arthritis, cancer, nonalcoholic steatohepatitis, but clinical utility has not yet been demonstrated. To evaluate the feasibility of osteopontin neutralization with antibodies in a clinical setting, we measured its physiological turnover rate in humans, a sensitive parameter required for mechanistic pharmacokinetic and pharmacodynamic (PK/PD) modeling of biotherapeutics. Results from a stable isotope-labelled amino acid pulse-chase study in healthy human subjects followed by mass spectrometry showed that osteopontin undergoes very rapid turnover. PK/PD modeling and simulation of different theoretical scenarios reveal that achieving sufficient target coverage using antibodies can be very challenging mostly due to osteopontin's fast turnover, as well as its relatively high plasma concentrations in human. Therapeutic antibodies against osteopontin would need to be engineered to have much extended PK than conventional antibodies, and be administered at high doses and with short dosing intervals.


Assuntos
Anticorpos Monoclonais/farmacologia , Anticorpos Neutralizantes/farmacologia , Osteopontina/imunologia , Animais , Estudos de Viabilidade , Humanos , Modelos Biológicos , Osteopontina/antagonistas & inibidores , Osteopontina/farmacocinética
4.
Clin Chem ; 64(2): 279-288, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29054922

RESUMO

BACKGROUND: The half-life of target proteins is frequently an important parameter in mechanistic pharmacokinetic and pharmacodynamic (PK/PD) modeling of biotherapeutics. Clinical studies for accurate measurement of physiologically relevant protein turnover can reduce the uncertainty in PK/PD model-based predictions, for example, of the therapeutic dose and dosing regimen in first-in-human clinical trials. METHODS: We used a targeted mass spectrometry work flow based on serial immunoaffinity enrichment ofmultiple human serum proteins from a [5,5,5-2H3]-L-leucine tracer pulse-chase study in healthy volunteers. To confirm the reproducibility of turnover measurements from serial immunoaffinity enrichment, multiple aliquots from the same sample set were subjected to protein turnover analysis in varying order. Tracer incorporation was measured by multiple-reaction-monitoring mass spectrometry and target turnover was calculated using a four-compartment pharmacokinetic model. RESULTS: Five proteins of clinical or therapeutic relevance including soluble tumor necrosis factor receptor superfamily member 12A, tissue factor pathway inhibitor, soluble interleukin 1 receptor like 1, soluble mucosal addressin cell adhesion molecule 1, and muscle-specific creatine kinase were sequentially subjected to turnover analysis from the same human serum sample. Calculated half-lives ranged from 5-15 h; however, no tracer incorporation was observed for mucosal addressin cell adhesion molecule 1. CONCLUSIONS: The utility of clinical pulse-chase studies to investigate protein turnover can be extended by serial immunoaffinity enrichment of target proteins. Turnover analysis from serum and subsequently from remaining supernatants provided analytical sensitivity and reproducibility for multiple human target proteins in the same sample set, irrespective of the order of analysis.


Assuntos
Proteínas Sanguíneas/metabolismo , Cromatografia de Afinidade/métodos , Espectrometria de Massas em Tandem/métodos , Adulto , Artefatos , Proteínas Sanguíneas/química , Monitoramento de Medicamentos/métodos , Humanos , Leucina/sangue , Masculino , Reprodutibilidade dos Testes , Adulto Jovem
5.
MAbs ; 10(1): 62-70, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29190188

RESUMO

Discovery of the upregulation of fibroblast growth factor-inducible-14 (Fn14) receptor following tissue injury has prompted investigation into biotherapeutic targeting of the Fn14 receptor for the treatment of conditions such as chronic kidney diseases. In the development of monoclonal antibody (mAb) therapeutics, there is an increasing trend to use biomeasures combined with mechanistic pharmacokinetic/pharmacodynamic (PK/PD) modeling to enable decision making in early discovery. With the aim of guiding preclinical efforts on designing an antibody with optimized properties, we developed a mechanistic site-of-action (SoA) PK/PD model for human application. This model incorporates experimental biomeasures, including concentration of soluble Fn14 (sFn14) in human plasma and membrane Fn14 (mFn14) in human kidney tissue, and turnover rate of human sFn14. Pulse-chase studies using stable isotope-labeled amino acids and mass spectrometry indicated the sFn14 half-life to be approximately 5 hours in healthy volunteers. The biomeasures (concentration, turnover) of sFn14 in plasma reveals a significant hurdle in designing an antibody against Fn14 with desired characteristics. The projected dose (>1 mg/kg/wk for 90% target coverage) derived from the human PK/PD model revealed potential high and frequent dosing requirements under certain conditions. The PK/PD model suggested a unique bell-shaped relationship between target coverage and antibody affinity for anti-Fn14 mAb, which could be applied to direct the antibody engineering towards an optimized affinity. This investigation highlighted potential applications, including assessment of PK/PD risks during early target validation, human dose prediction and drug candidate optimization.


Assuntos
Anticorpos Monoclonais/farmacocinética , Desenvolvimento de Medicamentos/métodos , Nefropatias/tratamento farmacológico , Rim/efeitos dos fármacos , Modelos Biológicos , Receptor de TWEAK/antagonistas & inibidores , Anticorpos Monoclonais/efeitos adversos , Esquema de Medicação , Cálculos da Dosagem de Medicamento , Estudos de Viabilidade , Humanos , Rim/imunologia , Rim/metabolismo , Nefropatias/sangue , Nefropatias/imunologia , Medição de Risco , Fatores de Risco , Receptor de TWEAK/sangue , Receptor de TWEAK/imunologia
6.
Anal Chem ; 87(17): 8603-7, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26236917

RESUMO

A targeted mass spectrometry-based method is presented that adopts the fast photochemical oxidation of proteins (FPOP) for footprinting of cystic fibrosis transmembrane conductance regulator (CFTR) membrane transporter at its original plasma membrane location. Two analytical imperatives were sought: (1) overall simplification in data acquisition and analysis and (2) lower quantitation limits, which enabled direct analysis of intrinsically low-abundance transmembrane proteins. These goals were achieved by using a reversed-footprinting technique that monitored the unoxidized peptides remaining after the FPOP treatment. In searching for structurally informative peptides, a workflow was designed for accurate and precise quantitation of CFTR peptides produced from proteolytically digesting the plasma membrane subproteome of cells. This sample preparation strategy mitigated the need for challenging purification of large quantities of structurally intact CFTR. On the basis of the interrogated peptides, it was proposed a concept of the structural marker peptide that could report CFTR structure and function in cells. The reversed-footprinting mass spectrometry extends the FPOP technology to study conformation and interaction changes of low-abundance proteins directly in their endogenous cellular locations.


Assuntos
Biomarcadores/química , Membrana Celular/química , Regulador de Condutância Transmembrana em Fibrose Cística/química , Espectrometria de Massas , Peptídeos/química , Pegadas de Proteínas , Sequência de Aminoácidos , Biomarcadores/metabolismo , Membrana Celular/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Humanos , Modelos Biológicos , Oxirredução
7.
J Proteome Res ; 13(11): 4676-85, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25227318

RESUMO

Deficient chloride transport through cystic fibrosis (CF) transmembrane conductance regulator (CFTR) causes lethal complications in CF patients. CF is the most common autosomal recessive genetic disease, which is caused by mutations in the CFTR gene; thus, CFTR mutants can serve as primary targets for drugs to modulate and rescue the ion channel's function. The first step of drug modulation is to increase the expression of CFTR in the apical plasma membrane (PM); thus, accurate measurement of CFTR in the PM is desired. This work reports a tandem enrichment strategy to prepare PM CFTR and uses a stable isotope labeled CFTR sample as the quantitation reference to measure the absolute amount of apical PM expression of CFTR in CFBE 41o- cells. It was found that CFBE 41o- cells expressing wild-type CFTR (wtCFTR), when cultured on plates, had 2.9 ng of the protein in the apical PM per million cells; this represented 10% of the total CFTR found in the cells. When these cells were polarized on filters, the apical PM expression of CFTR increased to 14%. Turnover of CFTR in the apical PM of baby hamster kidney cells overexpressing wtCFTR (BHK-wtCFTR) was also quantified by targeted proteomics based on multiple reaction monitoring mass spectrometry; wtCFTR had a half-life of 29.0 ± 2.5 h in the apical PM. This represents the first direct measurement of CFTR turnover using stable isotopes. The absolute quantitation and turnover measurements of CFTR in the apical PM can significantly facilitate understanding the disease mechanism of CF and thus the development of new disease-modifying drugs. Absolute CFTR quantitation allows for direct result comparisons among analyses, analysts, and laboratories and will greatly amplify the overall outcome of CF research and therapy.


Assuntos
Membrana Celular/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística/tratamento farmacológico , Fibrose Cística/metabolismo , Modelos Moleculares , Proteômica/métodos , Animais , Biotinilação , Linhagem Celular , Cloretos/metabolismo , Cricetinae , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/química , Meia-Vida , Humanos , Transporte de Íons/fisiologia , Marcação por Isótopo , Espectrometria de Massas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA