Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Expert Opin Drug Deliv ; 19(6): 685-705, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35698794

RESUMO

INTRODUCTION: Compared to normal cells, malignant cancer cells require more iron for their growth and rapid proliferation, which can be supplied by a high expression level of transferrin receptor (TfR). It is well known that the expression of TfR on the tumor cells is considerably higher than that of normal cells, which makes TfR an attractive target in cancer therapy. AREAS COVERED: In this review, the primary focus is on the role of TfR as a valuable tool for cancer-targeted drug delivery, followed by the full coverage of available TfR ligands and their conjugation chemistry to the surface of liposomes. Finally, the most recent studies investigating the potential of TfR-targeted liposomes as promising drug delivery vehicles to different cancer cells are highlighted with emphasis on their improvement possibilities to become a part of future cancer medicines. EXPERT OPINION: Liposomes as a valuable class of nanocarriers have gained much attention toward cancer therapy. From all the studies that have exploited the therapeutic and diagnostic potential of TfR on cancer cells, it can be realized that the systematic assessment of TfR ligands applied for liposomal targeted delivery has yet to be entirely accomplished.


Assuntos
Antineoplásicos , Neoplasias , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Sistemas de Liberação de Medicamentos , Humanos , Ligantes , Lipossomos/metabolismo , Neoplasias/tratamento farmacológico , Receptores da Transferrina/metabolismo , Transferrina/metabolismo
2.
J Control Release ; 345: 371-384, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35301054

RESUMO

The effective treatment of glioma through conventional chemotherapy is proved to be a great challenge in clinics. The main reason is due to the existence of two physiological and pathological barriers respectively including the blood-brain barrier (BBB) and blood-brain tumor barrier (BBTB) that prevent most of the chemotherapeutics from efficient delivery to the brain tumors. To address this challenge, an ideal drug delivery system would efficiently traverse the BBB and BBTB and deliver the therapeutics into the glioma cells with high selectivity. Herein, a targeted delivery system was developed based on nanostructured lipid carriers (NLCs) modified with two proteolytically stable D-peptides, D8 and RI-VAP (Dual NLCs). D8 possesses high affinity towards nicotine acetylcholine receptors (nAChRs), overexpressed on brain capillary endothelial cells (BCECs), and can penetrate through the BBB with high efficiency. RI-VAP is a specific ligand of cell surface GRP78 (csGRP78), a specific angiogenesis and cancer cell-surface marker, capable of circumventing the BBTB with superior glioma-homing property. Dual NLCs could internalize into BCECs, tumor neovascular endothelial cells, and glioma cells with high specificity and could penetrate through in vitro BBB and BBTB models with excellent efficiency compared to non-targeted or mono-targeted NLCs. In vivo whole-animal imaging and ex vivo imaging further confirmed the superior targeting capability of Dual NLCs towards intracranial glioma. When loaded with Bortezomib (BTZ), Dual NLCs attained the highest therapeutic efficiency by means of superior in vitro cytotoxicity and apoptosis and prolonged survival rate and efficient anti-glioma behavior in intracranial glioma bearing mice. Collectively, the designed targeting platform in this study could overcome multiple barriers and effectively deliver BTZ to glioma cells, which represent its potential for advanced brain cancer treatment with promising therapeutic outcomes.


Assuntos
Neoplasias Encefálicas , Glioma , Animais , Barreira Hematoencefálica/metabolismo , Bortezomib/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos/métodos , Células Endoteliais/metabolismo , Glioma/tratamento farmacológico , Lipídeos/uso terapêutico , Camundongos
3.
Int J Pharm ; 613: 121395, 2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-34933080

RESUMO

The existence of the blood-brain barrier (BBB) makes the clinical chemotherapy of glioma a formidable challenge, because it hinders the passage of different chemotherapeutics into the brain and reduces the overall therapeutic efficiency. Therefore, it is necessary to design a drug delivery system in way that would favor the transportation of anti-cancer agents across the BBB and increase their selective accumulation within the tumor cells without affecting the normal tissues. Transferrin receptor (TfR) that shows an elevated level of expression on the BBB and glioma cells emerges as a promising tool for brain targeted delivery and glioma therapy. However, only a limited number of studies have comparatively evaluated the functionally of TfR targeting ligands. Herein, a series of liposomal formulations modified with the most well-known TfR targeting peptides including T12 (also known as THR), B6, and T7 was developed and their brain targeting capability and selective glioma accumulation was comparatively evaluated in vitro and in vivo. Among all TfR targeting or non-targeting groups, T7-modified liposomes (T7-LS) showed the highest BBB penetration capacity and brain distribution and displayed an enhanced accumulation in glioma cells. When loaded with vincristine (VCR), as a model chemotherapeutic, T7-LS/VCR could achieve the best anti-glioma outcome by means of targeted cytotoxicity and apoptosis in vitro. The obtained results suggested T7-LS as a potential platform for effective brain targeted delivery and glioma therapy in clinic.


Assuntos
Neoplasias Encefálicas , Glioma , Barreira Hematoencefálica , Neoplasias Encefálicas/tratamento farmacológico , Linhagem Celular Tumoral , Glioma/tratamento farmacológico , Humanos , Lipossomos , Peptídeos , Transferrina , Vincristina
4.
Iran J Pharm Res ; 20(3): 506-515, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34904004

RESUMO

Methotrexate (MTX) is one of the most effective therapeutics to treat different types of solid tumors; however, it suffers low permeability limiting its bioavailability and cellular uptake. To tackle this, we aim to design and fabricate different types of cell-penetrating peptides (CPPs) to improve the intracellular uptake of MTX without causing any immunogenic response. CPPs were synthesized by the solid-phase peptide synthesis method. Peptide-MTX conjugates were prepared via covalent binding of peptide and drug molecule. CPPs and peptide-E8 nanoparticles were characterized using zeta-sizer and scanning electron microscopy. Cytotoxicity of CPPs and peptide-MTX conjugates was evaluated by MTT assay. An enzyme-linked immunosorbent assay was employed to assess the IL-6 and TNF-α cytokine release profile. Amongst all sequences, W4R4-MTX possessed the highest loading efficiency (97%) and drug to peptide percentage (24.02%). The lowest loading efficiency (36%) and drug to peptide percentage (8.76%) were seen for NGRWK-MTX conjugates. The NGRWR peptide and NGRWR-E8 nanoparticles had acceptable size (~100 nm) with spherical and rod-like structures, respectively. The selected CPPs and peptide-MTX conjugates did not show any cytotoxicity or immunogenicity. The fabricated peptides are represented as promising carriers to improve the intracellular delivery of MTX to cancer cells with low immunogenic and cytotoxic effects on normal cells.

5.
Iran J Basic Med Sci ; 24(3): 383-390, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33995950

RESUMO

OBJECTIVES: Doxorubicin (Dox) is one of the most well-known chemotherapeutics that are commonly applied for a wide range of cancer treatments. However, in most cases, efflux pumps like P-glycoprotein (P-gp), expel the taken drugs out of the cell and decrease the Dox bioavailability. Expression of P-gp is associated with elevated mRNA expression of the ATP-binding cassette B1 (ABCB1) gene. MATERIALS AND METHODS: In the current study, different sequences of cell-penetrating peptides (CPPs) containing tryptophan, lysine, and arginine and their nano-complexes were synthesized and their impact on the expression and activity of the ABCB1 gene was evaluated in the A549 lung carcinoma cell line. Furthermore, the cellular uptake of designed CPPs in the A549 cell line was assessed. RESULTS: The designed peptides, including [W4K4], [WR]3-QGR, R10, and K10 increased Dox cytotoxicity after 48 hr. Furthermore, arginine-rich peptides showed higher cellular uptake. Rhodamin123 accumulation studies illustrated that all the obtained peptides could successfully inhibit the P-gp pump. The designed peptides inhibited the ABCB1 gene expression, of which, [W4K4] resulted in the lowest expression ratio. CONCLUSION: [W4K4], [WR]3-QGR, R10, and K10 could successfully increase the Dox cytotoxicity by decreasing the efflux pump gene expression.

6.
Int J Pharm ; 602: 120645, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33915182

RESUMO

High-grade glioma is one of the most aggressive types of cancer with a low survival rate ranging from 12 to 15 months after the first diagnosis. Though being the most common strategy for glioma therapy, conventional chemotherapy suffers providing the therapeutic dosage of common therapeutics mostly because of limited permeability of blood-brain barrier (BBB), and blood-brain tumor barrier (BBTB) to anticancer agents. Among various nanoformulations, liposomes are considered as the most popular carriers aimed for glioma therapy. However, non-targeted liposomes which passively accumulate in most of the cancer tissues mainly through the enhanced permeation and retention effect (EPR), may not be applicable for glioma therapy due to BBB tight junctions. In the recent decade, the surface modification of liposomes with different active targeting ligands has shown promising results by getting different chemotherapeutics across the BBB and BBTB and leading them into the glioma cells. The present review discusses the major barriers for drug delivery systems to glioma, elaborates the existing mechanisms for liposomes to traverse across the BBB, and explores the main strategies for incorporation of targeting ligands onto the liposomes. It subsequently investigates the most recent and relevant studies of actively targeted liposomes modified with antibodies, aptamers, monosaccharides, polysaccharides, proteins, and peptides applied for effective glioma therapy, and highlights the common challenges facing this area. Finally, the actively targeted liposomes undergoing preclinical and clinical studies for delivery of different anticancer agents to glioma cells will be reviewed.


Assuntos
Neoplasias Encefálicas , Glioma , Barreira Hematoencefálica , Neoplasias Encefálicas/tratamento farmacológico , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Glioma/tratamento farmacológico , Humanos , Lipossomos
7.
J Control Release ; 328: 932-941, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33129921

RESUMO

As one of the deadliest diseases, cancer frequently resists existing therapeutics because they do not target all cells within a progressing tumor, for example both tumor stem and proliferating cells. This frequently results in enrichment of invasive and metastatic drug-resistant tumor cells subpopulations, cancer recurrence and eventually, patient mortality. Thus, there is an urgent need to identify specific markers, by which the targeted imaging and/or therapeutic "guided missile"-like agents can specifically detect and/or eradicate all cancer cells within a heterogeneous tumor, while leaving the normal cells intact. As a member of heat shock protein 70 (HSP70) superfamily, glucose regulated protein 78 (GRP78) has been documented as a molecular chaperone in the endoplasmic reticulum (ER) which mainly responds to ER stresses in normal cells. There is over-expression of GRP78 on the surface of cancer cells and angiogenic endothelial cells, which makes it a promising target for different types of peptides and antibodies that can be employed for targeted cancer therapy or imaging. In this review, we discuss the biological processes, functional importance and translocation mechanisms of cell surface GRP78 (csGRP78) in tumor cells. As a cancer biomarker, we also review the potential applications of csGRP78 targeted therapy and imaging and finally we suggest a brief roadmap ahead of csGRP78 targeting for targeted theranostic implications.


Assuntos
Proteínas de Membrana , Neoplasias , Chaperona BiP do Retículo Endoplasmático , Células Endoteliais , Glucose , Proteínas de Choque Térmico , Humanos , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico
8.
Drug Dev Ind Pharm ; 46(4): 521-530, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32116040

RESUMO

The low cellular uptake of Methotrexate (MTX), a commonly used anticancer drug, is a big challenge for efficient cancer therapy. Self-assembled peptide nanoparticles (SAPNs) are one of the major classes of peptide vectors that have gained much attention toward novel drug delivery systems. In the present study, different sequences of cell-penetrating peptides including R2W4R2 and W3R4W3 and their SAPNs (R2W4R2-E12 and W3R4W3-E12) were designed for efficient delivery of MTX into MCF7 breast cancer cells. Based on electron microscopy results, the obtained SAPNs were in nano scale with spherical shape. There was a positive relationship between the free energy of water to octanol transferring and cellular penetration of designed nanostructures. The R2W4R2 possessed proper free energy and ability to form a spherical structure and hydrophobic-hydrophobic interactions, therefore, exhibited more cellular penetration than W3R4W3. The cellular uptake of obtained nanoparticles was examined by flow cytometry and fluorescence microscopy, in which, R2W4R2 and R2W4R2-E12 showed more appropriate penetration into MCF7 cells than W3R4W3 and W3R4W3-E12. The cytotoxicity of MTX-loaded peptides and SAPNs was examined by MTT assay. As a result, at higher concentrations, the R2W4R2 and R2W4R2-E12 showed higher cytotoxic behavior than their counterparts. Despite their enhanced cellular internalization, the cytotoxic behavior of MTX-loaded SAPNs at lower concentrations was relatively less than free MTX, which could be ascribed to the gradual nature of drug detachment from these conjugates. Therefore, R2W4R2 could be considered as an efficient choice to enhance the therapeutic efficiency of MTX in cancer treatments.


Assuntos
Antineoplásicos/administração & dosagem , Peptídeos Penetradores de Células/farmacologia , Portadores de Fármacos/farmacologia , Metotrexato/administração & dosagem , Neoplasias/tratamento farmacológico , Antineoplásicos/toxicidade , Permeabilidade da Membrana Celular/efeitos dos fármacos , Peptídeos Penetradores de Células/química , Portadores de Fármacos/química , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Interações Hidrofóbicas e Hidrofílicas , Células MCF-7 , Metotrexato/toxicidade , Nanopartículas/química , Neoplasias/patologia , Testes de Toxicidade Aguda
9.
Adv Funct Mater ; 30(19)2020 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-34093104

RESUMO

Although considerable efforts have been conducted to diagnose, improve, and treat cancer in the past few decades, existing therapeutic options are insufficient, as mortality and morbidity rates remain high. Perhaps the best hope for substantial improvement lies in early detection. Recent advances in nanotechnology are expected to increase the current understanding of tumor biology, and will allow nanomaterials to be used for targeting and imaging both in vitro and in vivo experimental models. Owing to their intrinsic physicochemical characteristics, nanostructures (NSs) are valuable tools that have received much attention in nanoimaging. Consequently, rationally designed NSs have been successfully employed in cancer imaging for targeting cancer-specific or cancer-associated molecules and pathways. This review categorizes imaging and targeting approaches according to cancer type, and also highlights some new safe approaches involving membrane-coated nanoparticles, tumor cell-derived extracellular vesicles, circulating tumor cells, cell-free DNAs, and cancer stem cells in the hope of developing more precise targeting and multifunctional nanotechnology-based imaging probes in the future.

10.
Cell Biochem Biophys ; 77(2): 123-137, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30570696

RESUMO

Nanomedicine is one of the growing fields that presents new techniques for cancer diagnosis and treatment. Gold nanoparticles (GNPs) are considered as an important class of nanomaterials that possess superior physicochemical properties that make them valuable in medical applications. Unique optical properties of GNPs and their utility in photothermal and radiotherapy have extended a new platform for early detection and treatment of cancer, lately. Nanostructures based on GNPs are nontoxic and biocompatible with a large surface area that makes it possible to modify their surface with different chemicals including different polymers, antibodies, and even drug molecules. Therefore, they are utilized for targeted drug delivery in order to carry drugs and selectively release them in desired tissues which reduces destructive effects on healthy cells while it elevates the drug dose in cancerous ones. This review mainly covers the basic properties of GNPs, their synthesis methods, and focuses on surface modification of these nanoparticles and their diagnosis and therapeutic applications in cancer.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Nanomedicina , Animais , Portadores de Fármacos/química , Humanos , Nanopartículas Metálicas/uso terapêutico , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Neoplasias/terapia , Fototerapia , Tomografia Computadorizada por Raios X
11.
Drug Dev Ind Pharm ; 44(3): 452-462, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29098882

RESUMO

In the current study, we proposed a facile method for fabrication of multifunctional pH- and thermo-sensitive magnetic nanocomposites (MNCs) as a theranostic agent for using in targeted drug delivery and magnetic resonance imaging (MRI). To this end, we decorated Fe3O4 magnetic nanoparticles (MNPs) with N,N-dimethylaminoethyl methacrylate (DMAEMA) and N-isopropylacrylamide (NIPAAm), best known for their pH- and thermo-sensitive properties, respectively. We also conjugated mesoporous silica nanoparticles (MSNs) to polymer matrix acting as drug container to enhance the drug encapsulation efficacy. Methotroxate (MTX) as a model drug was successfully loaded in MNCs (M-MNCs) via surface adsorption onto MSNs and electrostatic interaction between drug and carrier. The pH- and temperature-triggered release of MTX was concluded through the evaluation of in vitro release at both physiological and simulated tumor tissue conditions. Based on in vitro cytotoxicity assay results, M-MNCs significantly revealed higher antitumor activity compared to free MTX. In vitro MR susceptibility experiment showed that M-MNCs relatively possessed high transverse relaxivity (r2) of about 0.15 mM-1·ms-1 and a linear relationship between the transverse relaxation rate (R2) and the Fe concentration in the M-MNCs was also demonstrated. Therefore, the designed MNCs can potentially become smart drug carrier, while they also can be promising MRI negative contrast agent.


Assuntos
Neoplasias Pulmonares/tratamento farmacológico , Metotrexato/administração & dosagem , Metotrexato/química , Nanocompostos/química , Células A549 , Acrilamidas/química , Linhagem Celular Tumoral , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Humanos , Concentração de Íons de Hidrogênio , Imageamento por Ressonância Magnética/métodos , Metacrilatos/química , Nanopartículas/administração & dosagem , Nanopartículas/química , Polietilenoglicóis/química , Polímeros/química , Dióxido de Silício/química
12.
Artif Cells Nanomed Biotechnol ; 45(1): 6-17, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27050642

RESUMO

Super-paramagnetic iron oxide nanoparticles (SPIONs) have been widely explored as novel magnetic resonance imaging (MRI) contrast agents because of a combination of favorable super-paramagnetic properties, biodegradability, and surface properties. Among the numerous MNPs under examination, SPIONs have involved considerable interest due to their outstanding magnetic properties, biocompatibility, and biodegradability. This review debates the ABCs of MR imaging, reports and informs the state of the art of magnetic nanoparticles in cancer dealing the source of SPIONs' exclusive magnetic properties, recent progresses in MRI acquisition methods for detection of SPIONs.


Assuntos
Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/uso terapêutico , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Animais , Humanos
13.
Drug Res (Stuttg) ; 67(2): 77-87, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27824433

RESUMO

Gold nanoparticles (AuNPs) due to their unique properties and manifold surface functionalities have been applied in bio-nanotechnology. The application of GNPs in recent medical and biological research is very extensive. Especially it involves applications such as detection and photothermalysis of microorganisms and cancer stem cells, biosensors; optical bio-imaging and observing of cells and these nanostructures also serve as practical platforms for therapeutic agents. In this review we studied all therapeutic applications of gold nanoparticles in biomedicine, synthesis methods, and surface properties.


Assuntos
Ouro/uso terapêutico , Nanopartículas Metálicas/uso terapêutico , Técnicas Biossensoriais/métodos , Técnicas de Química Sintética , Diagnóstico por Imagem/métodos , Ouro/efeitos adversos , Ouro/química , Ouro/farmacocinética , Humanos , Nanopartículas Metálicas/efeitos adversos , Nanopartículas Metálicas/química , Fototerapia/métodos , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA